127 research outputs found

    On Archiving and Retrieval of Sequential Images From Tomographic Databases in PACS

    Get PDF
    In the picture archiving and communication systems (PACS) used in modern hospitals, the current practice is to retrieve images based on keyword search, which returns a complete set of images from the same scan. Both diagnostically useful and negligible images in the image databases are retrieved and browsed by the physicians. In addition to the text-based search query method, queries based on image contents and image examples have been developed and integrated into existing PACS systems. Most of the content-based image retrieval (CBIR) systems for medical image databases are designed to retrieve images individually. However, in a database of tomographic images, it is often diagnostically more useful to simultaneously retrieve multiple images that are closely related for various reasons, such as physiological continguousness, etc. For example, high resolution computed tomography (HRCT) images are taken in a series of cross-sectional slices of human body. Typically, several slices are relevant for making a diagnosis, requiring a PACS system that can retrieve a contiguous sequence of slices. In this paper, we present an extension to our physician-in-the-loop CBIR system, which allows our algorithms to automatically determine the number of adjoining images to retain after certain key images are identified by the physician. Only the key images, so identified by the physician, and the other adjoining images that cohere with the key images are kept on-line for fast retrieval; the rest of the images can be discarded if so desired. This results in large reduction in the amount of storage needed for fast retrieval

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk

    Get PDF
    We performed a meta-analysis of five genome-wide association studies to identify common variants influencing colorectal cancer (CRC) risk comprising 8,682 cases and 9,649 controls. Replication analysis was performed in case-control sets totaling 21,096 cases and 19,555 controls. We identified three new CRC risk loci at 6p21 (rs1321311, near CDKN1A; P = 1.14 × 10(-10)), 11q13.4 (rs3824999, intronic to POLD3; P = 3.65 × 10(-10)) and Xp22.2 (rs5934683, near SHROOM2; P = 7.30 × 10(-10)) This brings the number of independent loci associated with CRC risk to 20 and provides further insight into the genetic architecture of inherited susceptibility to CRC.Swedish Research Council et al.Manuscrip

    Recurrent Coding Sequence Variation Explains only A Small Fraction of the Genetic Architecture of Colorectal Cancer

    Get PDF
    Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10-7), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10-7); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10-

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    Aim: Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location: Global. Methods: We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results: Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions: Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.Fil: Kot, Connie Y.. University of Duke; Estados UnidosFil: Åkesson, Susanne. Lund University; SueciaFil: Alfaro Shigueto, Joanna. Universidad Cientifica del Sur; Perú. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Amorocho Llanos, Diego Fernando. Research Center for Environmental Management and Development; ColombiaFil: Antonopoulou, Marina. Emirates Wildlife Society-world Wide Fund For Nature; Emiratos Arabes UnidosFil: Balazs, George H.. Noaa Fisheries Service; Estados UnidosFil: Baverstock, Warren R.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Blumenthal, Janice M.. Cayman Islands Government; Islas CaimánFil: Broderick, Annette C.. University of Exeter; Reino UnidoFil: Bruno, Ignacio. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Canbolat, Ali Fuat. Hacettepe Üniversitesi; Turquía. Ecological Research Society; TurquíaFil: Casale, Paolo. Università degli Studi di Pisa; ItaliaFil: Cejudo, Daniel. Universidad de Las Palmas de Gran Canaria; EspañaFil: Coyne, Michael S.. Seaturtle.org; Estados UnidosFil: Curtice, Corrie. University of Duke; Estados UnidosFil: DeLand, Sarah. University of Duke; Estados UnidosFil: DiMatteo, Andrew. CheloniData; Estados UnidosFil: Dodge, Kara. New England Aquarium; Estados UnidosFil: Dunn, Daniel C.. University of Queensland; Australia. The University of Queensland; Australia. University of Duke; Estados UnidosFil: Esteban, Nicole. Swansea University; Reino UnidoFil: Formia, Angela. Wildlife Conservation Society; Estados UnidosFil: Fuentes, Mariana M. P. B.. Florida State University; Estados UnidosFil: Fujioka, Ei. University of Duke; Estados UnidosFil: Garnier, Julie. The Zoological Society of London; Reino UnidoFil: Godfrey, Matthew H.. North Carolina Wildlife Resources Commission; Estados UnidosFil: Godley, Brendan J.. University of Exeter; Reino UnidoFil: González Carman, Victoria. Instituto National de Investigación y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Harrison, Autumn Lynn. Smithsonian Institution; Estados UnidosFil: Hart, Catherine E.. Grupo Tortuguero de las Californias A.C; México. Investigacion, Capacitacion y Soluciones Ambientales y Sociales A.C; MéxicoFil: Hawkes, Lucy A.. University of Exeter; Reino UnidoFil: Hays, Graeme C.. Deakin University; AustraliaFil: Hill, Nicholas. The Zoological Society of London; Reino UnidoFil: Hochscheid, Sandra. Stazione Zoologica Anton Dohrn; ItaliaFil: Kaska, Yakup. Dekamer—Sea Turtle Rescue Center; Turquía. Pamukkale Üniversitesi; TurquíaFil: Levy, Yaniv. University Of Haifa; Israel. Israel Nature And Parks Authority; IsraelFil: Ley Quiñónez, César P.. Instituto Politécnico Nacional; MéxicoFil: Lockhart, Gwen G.. Virginia Aquarium Marine Science Foundation; Estados Unidos. Naval Facilities Engineering Command; Estados UnidosFil: López-Mendilaharsu, Milagros. Projeto TAMAR; BrasilFil: Luschi, Paolo. Università degli Studi di Pisa; ItaliaFil: Mangel, Jeffrey C.. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Margaritoulis, Dimitris. Archelon; GreciaFil: Maxwell, Sara M.. University of Washington; Estados UnidosFil: McClellan, Catherine M.. University of Duke; Estados UnidosFil: Metcalfe, Kristian. University of Exeter; Reino UnidoFil: Mingozzi, Antonio. Università Della Calabria; ItaliaFil: Moncada, Felix G.. Centro de Investigaciones Pesqueras; CubaFil: Nichols, Wallace J.. California Academy Of Sciences; Estados Unidos. Center For The Blue Economy And International Environmental Policy Program; Estados UnidosFil: Parker, Denise M.. Noaa Fisheries Service; Estados UnidosFil: Patel, Samir H.. Coonamessett Farm Foundation; Estados Unidos. Drexel University; Estados UnidosFil: Pilcher, Nicolas J.. Marine Research Foundation; MalasiaFil: Poulin, Sarah. University of Duke; Estados UnidosFil: Read, Andrew J.. Duke University Marine Laboratory; Estados UnidosFil: Rees, ALan F.. University of Exeter; Reino Unido. Archelon; GreciaFil: Robinson, David P.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Robinson, Nathan J.. Fundación Oceanogràfic; EspañaFil: Sandoval-Lugo, Alejandra G.. Instituto Politécnico Nacional; MéxicoFil: Schofield, Gail. Queen Mary University of London; Reino UnidoFil: Seminoff, Jeffrey A.. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Seney, Erin E.. University Of Central Florida; Estados UnidosFil: Snape, Robin T. E.. University of Exeter; Reino UnidoFil: Sözbilen, Dogan. Dekamer—sea Turtle Rescue Center; Turquía. Pamukkale University; TurquíaFil: Tomás, Jesús. Institut Cavanilles de Biodiversitat I Biologia Evolutiva; EspañaFil: Varo Cruz, Nuria. Universidad de Las Palmas de Gran Canaria; España. Ads Biodiversidad; España. Instituto Canario de Ciencias Marinas; EspañaFil: Wallace, Bryan P.. University of Duke; Estados Unidos. Ecolibrium, Inc.; Estados UnidosFil: Wildermann, Natalie E.. Texas A&M University; Estados UnidosFil: Witt, Matthew J.. University of Exeter; Reino UnidoFil: Zavala Norzagaray, Alan A.. Instituto politecnico nacional; MéxicoFil: Halpin, Patrick N.. University of Duke; Estados Unido

    THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the structure and dynamics of black hole emission regions on scales smaller than their horizons. This has the potential to critically probe the mechanisms by which black holes accrete and launch outflows, and the structure of supermassive black hole spacetimes. However, accessing this information is a formidable analysis challenge for two reasons. First, the EHT natively produces a variety of data types that encode information about the image structure in nontrivial ways; these are subject to a variety of systematic effects associated with very long baseline interferometry and are supplemented by a wide variety of auxiliary data on the primary EHT targets from decades of other observations. Second, models of the emission regions and their interaction with the black hole are complex, highly uncertain, and computationally expensive to construct. As a result, the scientific utilization of EHT observations requires a flexible, extensible, and powerful analysis framework. We present such a framework, Themis, which defines a set of interfaces between models, data, and sampling algorithms that facilitates future development. We describe the design and currently existing components of Themis, how Themis has been validated thus far, and present additional analyses made possible by Themis that illustrate its capabilities. Importantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these, and do so in a computationally efficient manner that can efficiently exploit modern high-performance computing facilities. Themis has already been used extensively in the scientific analysis and interpretation of the first EHT observations of M87

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT

    Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature—a ring with azimuthal brightness asymmetry—and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009–2017 to be consistent with a persistent asymmetric ring of ~40 μas diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin

    First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole

    Get PDF
    We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 +/- 3 mu as and constrain its fractional width to b
    corecore