7 research outputs found

    Design, synthesis, and discovery of 5-piperazinyl-1,2,6,7-tetrahydro-5H-azepino[3,2,1-hi]indol-4-one derivatives: A novel series of mixed dopamine D<SUB>2</SUB>/D<SUB>4</SUB> receptor antagonist

    No full text
    5-Piperazinyl-1,2,6,7-tetrahydro-5H-azepino[3,2,1-hi]indol-4-one derivatives were designed, synthesized, and identified as a new series of mixed dopamine D2/D4 receptor antagonists. This series featured a rigid tricyclic ring system as an important pharmacophore core structure for high binding affinity. Molecular modeling studies are also described

    2-Arylpyrimidines: novel CRF-1 receptor antagonists

    No full text
    The design, synthesis and structure-activity relationship studies of a novel series of CRF-1 receptor antagonists, the 2-arylpyrimidines, are described. The effects of substitution on the aromatic ring and the pyrimidine core on CRF-1 receptor binding were investigated. A number of compounds with K<SUB>i</SUB> values below 10 nM and lipophilicity in a minimally acceptable range for a CNS drug (cLog P &lt; 5) were discovered

    The design, synthesis and structure-activity relationships of 1-aryl-4-aminoalkylisoquinolines: a novel series of CRF-1 receptor antagonists

    No full text
    The design, synthesis and structure-activity relationships of a novel series of CRF-1 receptor antagonist, the 1-aryl-4-alkylaminoisoquinolines, is described. The effects of substitution on the aromatic ring, the amino group and the isoquinoline core on CRF-1 receptor binding were investigated

    P2X7 receptor mediated release of microglial prostanoids and miRNAs correlates with reversal of neuropathic hypersensitivity in rats

    No full text
    BACKGROUND: P2X7 receptor antagonists have potential for treating various CNS diseases, including neuropathic pain, although none have been approved for clinical use. Reasons may include insufficient understanding of P2X7 receptor signaling in pain and the lack of a corresponding preclinical mechanistic biomarker. METHODS: Lu AF27139 is a highly selective and potent small molecule antagonist at rat, mouse, and human forms of the P2X7 receptor, with excellent pharmacokinetic and CNS permeability properties. In the current experiments, we probed the utility of previously characterized and novel signaling cascades exposed to Lu AF27139 using cultured microglia combined with release assays. Subsequently, we assessed the biomarker potential of identified candidate molecules in the rat chronic constriction injury (CCI) model of neuropathic pain; study design limitations precluded their assessment in spared nerve injury (SNI) rats. RESULTS: Lu AF27139 blocked several pain-relevant pathways downstream of P2X7 receptors in-vitro. At brain and spinal cord receptor occupancy levels capable of functionally blocking P2X7 receptors, it diminished neuropathic hypersensitivity in SNI rats, and less potently in CCI rats. Although tissue levels of numerous molecules previously linked to neuropathic pain and P2X7 receptor function (e.g. IL-6, IL-1β, cathepsin-S, 2-AG) were unaffected by CCI, Lu AF27139-mediated regulation of spinal PGE2 and miRNA (e.g. rno-miR-93-5p) levels increased by CCI aligned with its ability to diminish neuropathic hypersensitivity. CONCLUSIONS: We have identified a pain-relevant P2X7 receptor-regulated mechanism in neuropathic rats that could hold promise as a translatable biomarker and by association enhance the clinical progression of P2X7 receptor antagonists in neuropathic pain
    corecore