743 research outputs found

    Neutron star properties and the equation of state of neutron-rich matter

    Full text link
    We calculate total masses and radii of neutron stars (NS) for pure neutron matter and nuclear matter in beta-equilibrium. We apply a relativistic nuclear matter equation of state (EOS) derived from Dirac-Brueckner-Hartree-Fock (DBHF) calculations. We use realistic nucleon-nucleon (NN) interactions defined in the framework of the meson exchange potential models. Our results are compared with other theoretical predictions and recent observational data. Suggestions for further study are discussed.Comment: 13 pages, 9 figures, 1 table; Revised version, accepted for publication in Physical Review

    Charged pions from Ni on Ni collisions between 1 and 2 AGeV

    Full text link
    Charged pions from Ni + Ni reactions at 1.05, 1.45 and 1.93 AGeV are measured with the FOPI detector. The mean π±\pi^{\pm} multiplicities per mean number of participants increase with beam energy, in accordance with earlier studies of the Ar + KCl and La + La systems. The pion kinetic energy spectra have concave shape and are fitted by the superposition of two Boltzmann distributions with different temperatures. These apparent temperatures depend only weakly on bombarding energy. The pion angular distributions show a forward/backward enhancement at all energies, but not the Θ=900\Theta = 90^0 enhancement which was observed in case of the Au + Au system. These features also determine the rapidity distributions which are therefore in disagreement with the hypothesis of one thermal source. The importance of the Coulomb interaction and of the pion rescattering by spectator matter in producing these phenomena is discussed.Comment: 22 pages, Latex using documentstyle[12pt,a4,epsfig], to appear in Z. Phys.

    Compilation and validation of SAR and optical data products for a complete and global map of inland/ocean water tailored to the climate modeling community

    Get PDF
    Accurate maps of surface water extent are of paramount importance for water management, satellite data processing and climate modeling. Several maps of water bodies based on remote sensing data have been released during the last decade. Nonetheless, none has a truly (90°N/90°S) global coverage while being thoroughly validated. This paper describes a global, spatially-complete (void-free) and accurate mask of inland/ocean water for the 2000–2012 period, built in the framework of the European Space Agency (ESA) Climate Change Initiative (CCI). This map results from the synergistic combination of multiple individual SAR and optical water body and auxiliary datasets. A key aspect of this work is the original and rigorous stratified random sampling designed for the quality assessment of binary classifications where one class is marginally distributed. Input and consolidated products were assessed qualitatively and quantitatively against a reference validation database of 2110 samples spread throughout the globe. Using all samples, overall accuracy was always very high among all products, between 98% and 100%. The CCI global map of open water bodies provided the best water class representation (F-score of 89%) compared to its constitutive inputs. When focusing on the challenging areas for water bodies’ mapping, such as shorelines, lakes and river banks, all products yielded substantially lower accuracy figures with overall accuracies ranging between 74% and 89%. The inland water area of the CCI global map of open water bodies was estimated to be 3.17 million km2 ± 0.24 million km2. The dataset is freely available through the ESA CCI Land Cover viewer

    Succinate in dystrophic white matter: A proton magnetic resonance spectroscopy finding characteristic for complex II deficiency

    No full text
    A deficiency of succinate dehydrogenase is a rare cause of mitochondrial encephalomyopathy. Three patients, 2 sisters and I boy from an unrelated family, presented with symptoms and magnetic resonance imaging signs of leukoencephalopathy. Localized proton magnetic resonance spectroscopy indicated a prominent singlet at 2.40ppm in cerebral and cerebellar white matter not present in gray matter or basal ganglia. The signal was also elevated in cerebrospinal fluid and could be identified as originating from the two equivalent methylene groups of succinate. Subsequently, an isolated deficiency of complex II (succinate:ubiquinone oxidoreductase) was demonstrated in 2 patients in muscle and fibroblasts. One of the sisters died at the age of 18 months. Postmortem examination showed the neuropathological characteristics of Leigh syndrome. Her younger sister, now 12 months old, is also severely affected; the boy, now 6 years old, follows a Milder, fluctuating clinical course. Magnetic resonance spectroscopy provides a characteristic pattern in succinate dehydrogenase deficiency

    Derivative-Coupling Models and the Nuclear-Matter Equation of State

    Get PDF
    The equation of state of saturated nuclear matter is derived using two different derivative-coupling Lagrangians. We show that both descriptions are equivalent and can be obtained from the sigma-omega model through an appropriate rescaling of the coupling constants. We introduce generalized forms of this rescaling to study the correlations amongst observables in infinite nuclear matter, in particular, the compressibility and the effective nucleon mass.Comment: 16 pages, 6 figures, 36 kbytes. To appear in Zeit. f. Phys. A (Hadrons and Nuclei

    Self-Consistent Relativistic Calculation of Nucleon Mean Free Path

    Full text link
    We present a fully self-consistent and relativistic calculation of the nucleon mean free path in nuclear matter and finite nuclei. Starting from the Bonn potential, the Dirac-Brueckner-Hartree-Fock results for nuclear matter are parametrized in terms of an effective σ\sigma-ω\omega Lagrangian suitable for the relativistic density-dependent Hartree-Fock (RDHF) approximation. The nucleon mean free path in nuclear matter is derived from this effective Lagrangian taking diagrams up to fourth-order into account. For the nucleon mean free path in finite nuclei, we make use of the density determined by the RDHF calculation in the local density approximation. Our microscopic results are in good agreement with the empirical data and predictions by Dirac phenomenology.Comment: 16 pages RevTex and 6 figures (paper, available upon request from [email protected]) UI-NTH-931

    Momentum Distribution in Nuclear Matter and Finite Nuclei

    Get PDF
    A simple method is presented to evaluate the effects of short-range correlations on the momentum distribution of nucleons in nuclear matter within the framework of the Green's function approach. The method provides a very efficient representation of the single-particle Green's function for a correlated system. The reliability of this method is established by comparing its results to those obtained in more elaborate calculations. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter using a local-density approximation. These results are compared to those obtained directly for light nuclei like 16O^{16}O.Comment: 17 pages REVTeX, 10 figures ps files adde

    Momentum and Energy Distributions of Nucleons in Finite Nuclei due to Short-Range Correlations

    Full text link
    The influence of short-range correlations on the momentum and energy distribution of nucleons in nuclei is evaluated assuming a realistic meson-exchange potential for the nucleon-nucleon interaction. Using the Green-function approach the calculations are performed directly for the finite nucleus 16^{16}O avoiding the local density approximation and its reference to studies of infinite nuclear matter. The nucleon-nucleon correlations induced by the short-range and tensor components of the interaction yield an enhancement of the momentum distribution at high momenta as compared to the Hartree-Fock description. These high-momentum components should be observed mainly in nucleon knockout reactions like (e,ep)(e,e'p) leaving the final nucleus in a state of high excitation energy. Our analysis also demonstrates that non-negligible contributions to the momentum distribution should be found in partial waves which are unoccupied in the simple shell-model. The treatment of correlations beyond the Brueckner-Hartree-Fock approximation also yields an improvement for the calculated ground-state properties.Comment: 12 pages RevTeX, 7 figures postscript files appende

    Activity driven modeling of time varying networks

    Get PDF
    Network modeling plays a critical role in identifying statistical regularities and structural principles common to many systems. The large majority of recent modeling approaches are connectivity driven. The structural patterns of the network are at the basis of the mechanisms ruling the network formation. Connectivity driven models necessarily provide a time-aggregated representation that may fail to describe the instantaneous and fluctuating dynamics of many networks. We address this challenge by defining the activity potential, a time invariant function characterizing the agents' interactions and constructing an activity driven model capable of encoding the instantaneous time description of the network dynamics. The model provides an explanation of structural features such as the presence of hubs, which simply originate from the heterogeneous activity of agents. Within this framework, highly dynamical networks can be described analytically, allowing a quantitative discussion of the biases induced by the time-aggregated representations in the analysis of dynamical processes.Comment: 10 pages, 4 figure

    Superprocesses as models for information dissemination in the Future Internet

    Full text link
    Future Internet will be composed by a tremendous number of potentially interconnected people and devices, offering a variety of services, applications and communication opportunities. In particular, short-range wireless communications, which are available on almost all portable devices, will enable the formation of the largest cloud of interconnected, smart computing devices mankind has ever dreamed about: the Proximate Internet. In this paper, we consider superprocesses, more specifically super Brownian motion, as a suitable mathematical model to analyse a basic problem of information dissemination arising in the context of Proximate Internet. The proposed model provides a promising analytical framework to both study theoretical properties related to the information dissemination process and to devise efficient and reliable simulation schemes for very large systems
    corecore