48 research outputs found

    Nuclear Factor Kappa B Activation Occurs in the Amnion Prior to Labour Onset and Modulates the Expression of Numerous Labour Associated Genes

    Get PDF
    Background: Prior to the onset of human labour there is an increase in the synthesis of prostaglandins, cytokines and chemokines in the fetal membranes, particular the amnion. This is associated with activation of the transcription factor nuclear factor kappa B (NFkB). In this study we characterised the level of NFkB activity in amnion epithelial cells as a measure of amnion activation in samples collected from women undergoing caesarean section at 39 weeks gestation prior to the onset of labour. Methodology/Principal Findings: We found that a proportion of women exhibit low or moderate NFkB activity while other women exhibit high levels of NFkB activity (n = 12). This activation process does not appear to involve classical pathways of NFkB activation but rather is correlated with an increase in nuclear p65-Rel-B dimers. To identify the full range of genes upregulated in association with amnion activation, microarray analysis was performed on carefully characterised nonactivated amnion (n = 3) samples and compared to activated samples (n = 3). A total of 919 genes were upregulated in response to amnion activation including numerous inflammatory genes such cyclooxygenase-2 (COX-2, 44-fold), interleukin 8 (IL-8, 6-fold), IL-1 receptor accessory protein (IL-1RAP, 4.5-fold), thrombospondin 1 (TSP-1, 3-fold) and, unexpectedly, oxytocin receptor (OTR, 24-fold). Ingenuity Pathway Analysis of the microarray data reveal the two main gene networks activated concurrently with amnion activation are i) cell death, cancer and morphology and ii) cell cycle, embryoni

    Analysis of high-depth sequence data for studying viral diversity: a comparison of next generation sequencing platforms using Segminator II

    Get PDF
    Background: Next generation sequencing provides detailed insight into the variation present within viral populations, introducing the possibility of treatment strategies that are both reactive and predictive. Current software tools, however, need to be scaled up to accommodate for high-depth viral data sets, which are often temporally or spatially linked. In addition, due to the development of novel sequencing platforms and chemistries, each with implicit strengths and weaknesses, it will be helpful for researchers to be able to routinely compare and combine data sets from different platforms/chemistries. In particular, error associated with a specific sequencing process must be quantified so that true biological variation may be identified. Results: Segminator II was developed to allow for the efficient comparison of data sets derived from different sources. We demonstrate its usage by comparing large data sets from 12 influenza H1N1 samples sequenced on both the 454 Life Sciences and Illumina platforms, permitting quantification of platform error. For mismatches median error rates at 0.10 and 0.12%, respectively, suggested that both platforms performed similarly. For insertions and deletions median error rates within the 454 data (at 0.3 and 0.2%, respectively) were significantly higher than those within the Illumina data (0.004 and 0.006%, respectively). In agreement with previous observations these higher rates were strongly associated with homopolymeric stretches on the 454 platform. Outside of such regions both platforms had similar indel error profiles. Additionally, we apply our software to the identification of low frequency variants. Conclusion: We have demonstrated, using Segminator II, that it is possible to distinguish platform specific error from biological variation using data derived from two different platforms. We have used this approach to quantify the amount of error present within the 454 and Illumina platforms in relation to genomic location as well as location on the read. Given that next generation data is increasingly important in the analysis of drug-resistance and vaccine trials, this software will be useful to the pathogen research community. A zip file containing the source code and jar file is freely available for download from http://www.bioinf.manchester.ac.uk/segminator/

    Immunohistochemical Characterisation of Cell-Type Specific Expression of CK1δ in Various Tissues of Young Adult BALB/c Mice

    Get PDF
    BACKGROUND: Casein kinase 1 delta (CK1delta) phosphorylates many key proteins playing important roles in such biological processes as cell growth, differentiation, apoptosis, circadian rhythm and vesicle transport. Furthermore, deregulation of CK1delta has been linked to neurodegenerative diseases and cancer. In this study, the cell specific distribution of CK1delta in various tissues and organs of young adult BALB/c mice was analysed by immunohistochemistry. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical staining of CK1delta was performed using three different antibodies against CK1delta. A high expression of CK1delta was found in a variety of tissues and organ systems and in several cell types of endodermal, mesodermal and ectodermal origin. CONCLUSIONS: These results give an overview of the cell-type specific expression of CK1delta in different organs under normal conditions. Thus, they provide evidence for possible cell-type specific functions of CK1delta, where CK1delta can interact with and modulate the activity of key regulator proteins by site directed phosphorylation. Furthermore, they provide the basis for future analyses of CK1delta in these tissues

    The elements of human cyclin D1 promoter and regulation involved

    Get PDF
    Cyclin D1 is a cell cycle machine, a sensor of extracellular signals and plays an important role in G1-S phase progression. The human cyclin D1 promoter contains multiple transcription factor binding sites such as AP-1, NF-қB, E2F, Oct-1, and so on. The extracellular signals functions through the signal transduction pathways converging at the binding sites to active or inhibit the promoter activity and regulate the cell cycle progression. Different signal transduction pathways regulate the promoter at different time to get the correct cell cycle switch. Disorder regulation or special extracellular stimuli can result in cell cycle out of control through the promoter activity regulation. Epigenetic modifications such as DNA methylation and histone acetylation may involved in cyclin D1 transcriptional regulation

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF

    Treatment-associated polymorphisms in protease are significantly associated with higher viral load and lower CD4 count in newly diagnosed drug-naive HIV-1 infected patients

    Get PDF
    Peer reviewe

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF
    Background Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19.Methods The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 µg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 µg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (antispike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing.Findings Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6–77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3–214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030–27 162), which increased to 37 460 ELU/mL (31 996–43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41–1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996–30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826–64 452), with a geometric mean fold change of 2·19 (1·90–2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37–14·32) and 15·90 (12·92–19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24–16·54] in the BNT162b2 group and 6·22 [3·90–9·92] in the mRNA-1273 group).Interpretation Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose

    Structural Determinants of the Packing and Electrostatic Behavior of Unsaturated Phosphoglycerides

    Get PDF
    Docosahexaenoic acid-containing phosphoglycerides accumulate preferentially in membranes of the retina, brain, and spermatozoa, but the functional significance of this largely remains to be determined. Previously we compared the physical properties of homogeneous monolayers of these and other phosphoglyceride species to obtain insights into their physiological roles. Particularly noteworthy were the unusually low dipole moments of species having sn-2-docosahexaenoyl chains. In this study, we have investigated the electrostatic and lateral packing properties of related phosphoglycerides and found that: 1), The dipole moment-lowering effect of the docosahexaenoyl group arises from its having a Z double bond at chain position n-3. 2), The large dipole moment-lowering effects at sn-1 of an ether bond to an alkyl or a 1Z alkenyl chain and that of a sn-2-esterified n-3 fatty acid are additive. 3), The 1Z double bond in an alkenyl chain lowers the molecular area of a phosphoglyceride and, concomitantly, makes it less compressible. 4), Ethanolamine-containing phosphoglycerides are generally less compressible than their corresponding choline analogs. Our data showing that relatively small lipid structural changes markedly alter lipid physical properties in fluid phases underscores the need to study the function of peripheral and integral membrane proteins in the presence of appropriate lipid species
    corecore