12,956 research outputs found
Uncertainties of predictions from parton distribution functions II: the Hessian method
We develop a general method to quantify the uncertainties of parton
distribution functions and their physical predictions, with emphasis on
incorporating all relevant experimental constraints. The method uses the
Hessian formalism to study an effective chi-squared function that quantifies
the fit between theory and experiment. Key ingredients are a recently developed
iterative procedure to calculate the Hessian matrix in the difficult global
analysis environment, and the use of parameters defined as components along
appropriately normalized eigenvectors. The result is a set of 2d Eigenvector
Basis parton distributions (where d=16 is the number of parton parameters) from
which the uncertainty on any physical quantity due to the uncertainty in parton
distributions can be calculated. We illustrate the method by applying it to
calculate uncertainties of gluon and quark distribution functions, W boson
rapidity distributions, and the correlation between W and Z production cross
sections.Comment: 30 pages, Latex. Reference added. Normalization of Hessian matrix
changed to HEP standar
A fifty year record of winter glacier melt events in southern Chile, 38°–42°S
Little is known about the frequency and potential mass balance impact of winter glacier melt events. In this study, daily atmospheric temperature soundings from the Puerto Montt radiosonde (41.43°S) are used to reconstruct winter melting events at the glacier equilibrium line altitude in the 38°–42°S region of southern Chile, between 1960 and 2010. The representativeness of the radiosonde temperatures to near-surface glacier temperatures is demonstrated using meteorological records from close to the equilibrium line on two glaciers in the region over five winters. Using a degree-day model we estimate an average of 0.28 m of melt and 21 melt days in the 15 June–15 September period each year, with high inter-annual variability. The majority of melt events are associated with midlatitude migratory high pressure systems crossing Chile and northwesterly flows, that force adiabatic compression and warm advection, respectively. There are no trends in the frequency or magnitude of melt events over the period of record, but the annual frequency of winter melt days shows a significant, although rather weak and probably non-linear, relationship to late winter and early spring values of a multivariate El Niño Southern Oscillation Index (MEI)
Fiber-diffraction Interferometer using Coherent Fiber Optic Taper
We present a fiber-diffraction interferometer using a coherent fiber optic
taper for optical testing in an uncontrolled environment. We use a coherent
fiber optic taper and a single-mode fiber having thermally-expanded core. Part
of the measurement wave coming from a test target is condensed through a fiber
optic taper and spatially filtered from a single-mode fiber to be reference
wave. Vibration of the cavity between the target and the interferometer probe
is common to both reference and measurement waves, thus the interference fringe
is stabilized in an optical way. Generation of the reference wave is stable
even with the target movement. Focus shift of the input measurement wave is
desensitized by a coherent fiber optic taper
Observed Effects of a Changing Step-Edge Density on Thin-Film Growth Dynamics
We grew SrTiO3 on SrTiO3 [001] by pulsed laser deposition, while observing
x-ray diffraction at the (0 0 .5) position. The drop dI in the x-ray intensity
following a laser pulse contains information about plume-surface interactions.
Kinematic theory predicts dI/I = -4sigma(1-sigma), so that dI/I depends only on
the amount of deposited material sigma. In contrast, we observed experimentally
that |dI/I| < 4sigma(1-sigma), and that dI/I depends on the phase of x-ray
growth oscillations. The combined results suggest a fast smoothing mechanism
that depends on surface step-edge density.Comment: 4 figure
Multiple Time Scales in Diffraction Measurements of Diffusive Surface Relaxation
We grew SrTiO3 on SrTiO3 (001) by pulsed laser deposition, using x-ray
scattering to monitor the growth in real time. The time-resolved small angle
scattering exhibits a well-defined length scale associated with the spacing
between unit cell high surface features. This length scale imposes a discrete
spectrum of Fourier components and rate constants upon the diffusion equation
solution, evident in multiple exponential relaxation of the "anti-Bragg"
diffracted intensity. An Arrhenius analysis of measured rate constants confirms
that they originate from a single activation energy.Comment: 4 pages, 3 figure
Studying Attractor Symmetries by Means of Cross Correlation Sums
We use the cross correlation sum introduced recently by H. Kantz to study
symmetry properties of chaotic attractors. In particular, we apply it to a
system of six coupled nonlinear oscillators which was shown by Kroon et al. to
have attractors with several different symmetries, and compare our results with
those obtained by ``detectives" in the sense of Golubitsky et al.Comment: LaTeX file, 16 pages and 16 postscript figures; tarred, gzipped and
uuencoded; submitted to 'Nonlinearity
Genetic Analysis of Population Dynamics of the Southeastern Coyote (Canis latrans)
Coyotes (Canis latrans) have been extremely successful in dispersing and expanding their range that now includes all fifty states of the United States in addition to Canada and parts of Central America. These animals have generally been considered a pest species due to their adaptive ability, high reproductivity, and impact as a top predator on commercial agricultural business. Population dynamics of coyotes is still poorly understood, yet such knowledge would be beneficial to management of coyotes in all areas. The goal of this study is to determine population structure in Alabama by using microsatellite DNA markers. In addition we plan to examine patterns of gene flow across an urban to rural gradient. This research is extremely applicable in urban coyote management as we will be able to describe gene flow between and among population of coyotes. Information gained about population structure among coyotes in east-central Alabama could be informative about populations across the southeastern region. It is our expectation that such biological data will be consolidated with the vast knowledge of the ecology of the southeastern coyote gathered to date to inform and aid management plans and decisions across the region. Approaching both conservation and management issues with a more unbiased view of the ecology of coyote populations will allow greater effectiveness in management practices for this species
Heterogeneous Agent Models: Two Simple Case Studies
These notes review two simple heterogeneous agent models in economics and finance. The first is a cobweb model with rational versus naive agents introduced in Brock and Hommes (1997). The second is an asset pricing model with fundamentalists versus technical traders introduced in Brock and Hommes (1998). Agents are boundedly rational and switch between different trading strategies, based upon an evolutionary fitness measure given by realized past profits. Evolutionary switching creates a nonlinearity in the dynamics. Rational routes to randomness, that is, bifurcation routes to complicated dynamical behaviour occur when agents become more sensitive to differences in evolutionary fitness
- …