12 research outputs found
Current Advances in Immunological Studies on the Vespidae Venom Antigen 5: Therapeutic and Prophylaxis to Hypersensitivity Responses
Although systemic reactions caused by allergenic proteins present in venoms affect a small part of the world population, Hymenoptera stings are among the main causes of immediate hypersensitivity responses, with risk of anaphylactic shock. In the attempt to obtain therapeutic treatments and prophylaxis to hypersensitivity responses, interest in the molecular characterization of these allergens has grown in the scientific community due to the promising results obtained in immunological and clinical studies. The present review provides an update on the knowledge regarding the immune response and the therapeutic potential of Antigen 5 derived from Hymenoptera venom. The results confirm that the identification and topology of epitopes, associated with molecular regions that interact with antibodies, are crucial to the improvement of hypersensitivity diagnostic methods
Facing Hymenoptera venom allergy: from natural to recombinant allergens
Along with food and drug allergic reactions, a Hymenoptera insect Sting (Apoidea, Vespidae, Formicidae) is one of the most common causes of anaphylaxis worldwide. Diagnoses of Hymenoptera venom allergy (HVA) and specific immunotherapy (SIT) have been based on the use of crude venom extracts. However, the incidence of cross-reactivity and low levels of sensibility during diagnosis, as well as the occurrence of nonspecific sensitization and undesired side effects during SIT, encourage the search for novel allergenic materials. Recombinant allergens are an interesting approach to improve allergy diagnosis and SIT because they circumvent major problems associated with the use of crude venom. Production of recombinant allergens depends on the profound molecular characterization of the natural counterpart by combining some omics approaches with high-throughput screening techniques and the selection of an appropriate system for heterologous expression. To date, several clinically relevant allergens and novel venom toxins have been identified, cloned and characterized, enabling a better understanding of the whole allergenic and envenoming processes. Here, we review recent findings on identification, molecular characterization and recombinant expression of Hymenoptera venom allergens and on the evaluation of these heterologous proteins as valuable tools for tackling remaining pitfalls on HVA diagnosis and immunotherapy.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenadação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
Cross-Reactive Carbohydrate Determinant in Apis mellifera, Solenopsis invicta and Polybia paulista Venoms: Identification of Allergic Sensitization and Cross-Reactivity
Allergic reactions to Hymenoptera venom, which could lead to systemic and even fatal symptoms, is characterized by hypersensitivity reactions mediated by specific IgE (sIgE) driven to venom allergens. Patients multisensitized to sIgE usually recognize more than one allergen in different Hymenoptera species. However, the presence of sIgE directed against Cross-Reactive Carbohydrate Determinant (CCD), which occurs in some allergens from Hymenoptera venom, hampers the identification of the culprit insects. CCD is also present in plants, pollen, fruits, but not in mammals. Bromelain (Brl) extracted from pineapples is a glycoprotein commonly used for reference to sIgE-CCD detection and analysis. In sera of fifty-one Hymenoptera allergic patients with specific IgE ≥ 1.0 KU/L, we assessed by immunoblotting the reactivity of sIgE to the major allergens of Apis mellifera, Polybia paulista and Solenopsis invicta venoms. We also distinguished, using sera adsorption procedures, the cases of CCD cross-reaction using Brl as a marker and inhibitor of CCD epitopes. The presence of reactivity for bromelain (24–28 kDa) was obtained in 43% of the patients, in which 64% presented reactivity for more than one Hymenoptera venom in radioallergosorbent (RAST) tests, and 90% showed reactivity in immunoblot analysis to the major allergens of Apis mellifera, Polybia paulista and Solenopsis invicta venoms. Sera adsorption procedures with Brl lead to a significant reduction in patients’ sera reactivity to the Hymenoptera allergens. Immunoblotting assay using pre- and post-Brl adsorption sera from wasp-allergic patients blotted with non-glycosylated recombinant antigens (rPoly p1, rPoly p5) from Polybia paulista wasp venom showed no change in reactivity pattern of sIgE that recognize allergen peptide epitopes. Our results, using Brl as a marker and CCD inhibitor to test sIgE reactivity, suggest that it could complement diagnostic methods and help to differentiate specific reactivity to allergens’ peptide epitopes from cross-reactivity caused by CCD, which is extremely useful in clinical practice
Influence of the collection methodology on the Apis mellifera venom composition: Peptide analysis
Differences of venom peptide composition as function of two collection methodologies, electrical stimulation (ES) and reservoir disruption (RD), were analyzed by reverse-phase HPLC in Apis mellifera races - A. m. adansonii, A. m. ligustica and Africanized honeybee. The analyses were performed through determination of the relative number and percentage of each molecular form associated to the peaks eluted by chromatography. Comparison of these profiles revealed qualitative and quantitative differences related to the venom collection methodology as well to the three races analyzed. In contrast to data usually found for venom proteins, the three races presented a major number of peaks or molecular forms when venom was collected by ES. Besides, in general, the relative concentration of each peak was higher for ES in relation to RD. That indicates the presence of molecular precursors in the venom obtained by RD. The presence/absence pattern of the peaks, such as their relative concentrations showed a closer similarity between A. m. adansonii and the Africanized honeybees than that observed between these and A. m. ligustica. The obtained data allowed a discussion about the differences in the relative concentration of each venom component according to the collection methodology, and finally the biological action of the venom in different races. So, these results, apart from being useful to establish a peptide profile for each bee race as a function of the venom collection methodology, pointed out once more that the chromatographic techniques are a great tool for the identification of A. mellifera subspecies
Comparative growth of trichoderma strains in different nutritional sources, using bioscreen c automated system Crescimento de linhagens de Trichoderma em diferentes fontes nutricionais, empregando o sistema automatizado Bioscreen C.
Trichoderma is one of the fungi genera that produce important metabolites for industry. The growth of these organisms is a consequence of the nutritional sources used as also of the physical conditions employed to cultivate them. In this work, the automated Bioscreen C system was used to evaluate the influence of different nutritional sources on the growth of Trichoderma strains (T. hamatum, T. harzianum, T. viride, and T. longibrachiatum) isolated from the soil in the Juréia-Itatins Ecological Station (JIES), São Paulo State - Brazil.The cultures were grown in liquid culture media containing different carbon- (2%; w/v) and nitrogen (1%; w/v) sources at 28ºC, pH 6.5, and agitated at 150 rpm for 72 h. The results showed, as expected, that glucose is superior to sucrose as a growth-stimulating carbon source in the Trichoderma strains studied, while yeast extract and tryptone were good growth-stimulating nitrogen sources in the cultivation of T. hamatum and T. harzianum.<br>Trichoderma é um dos gêneros de fungos produtores de metabólitos de interesse industrial. O crescimento destes organismos é conseqüência das fontes nutricionais utilizadas, juntamente com as condições físicas de cultivo. Neste trabalho, o sistema automatizado Bioscreen C foi utilizado para avaliar a influência de diferentes fontes nutricionais sobre o crescimento de linhagens de Trichoderma (T. hamatum, T. harzianum, T. viride e T. longibrachiatum) isoladas do solo da Estação Ecológica da Juréia-Itatins (JIES), São Paulo - Brasil. Os cultivos foram feitos em meios líquidos de cultura contendo diferentes fontes de carbono (2%; w / v) e nitrogênio (1%; w / v) a 28ºC, pH 6,5 e agitados a 150 rpm durante 72 h. Os resultados mostraram, conforme esperado, que a glicose é melhor do que a sacarose como fonte de carbono indutora de crescimento das linhagens de Trichoderma testadas, enquanto que, o extrato de leveduras e a triptona foram boas fontes de nitrogênio indutoras de crescimento para os cultivos de T. hamatum e T. harzianum
Enzymatic variability among venoms from different subspecies of Apis mellifera (Hymenoptera: Apidae)
The enzymatic variability was analyzed in venom extracts from bees reared in different colonies of the Africanized, A. m. ligustica and A. m. carnica subspecies. The implications of this variation focused on the biochemistry differentiation and immunogenicity of these venoms. The results showed the existence of a huge variability among the subspecies as well as among the colonies for three out of the six tested components - hyaluronidase, acid phosphatase and proteases - suggesting the utilization of these features as possible biochemical markers. Furthermore, although not statistically significant, it was found that the Africanized bee venom presented slightly higher levels of protein content and esterase activity, when compared to the other subspecies. If the esterase plays a role in the pain intensity caused by the sting, as suggested elsewhere, this might suggest a reason for a bigger algogenicity of this venom in relation to that of European bees. On the other hand, A. m. ligustica bees presented the highest levels of proteolytic and acid phosphatase activities, whose functions are not enlightened in Hymenoptera venoms. The A. m. carnica workers presented the highest hyaluronidase and the lowest acid phosphatase activity levels. The extremely variable results among colonies of the same subspecies and among subspecies, for the tested venom components, justify the absence of correlation between allergic reactions and tests with pooled venom
Biological and Inflammatory Effects of Antigen 5 from Polybia paulista (Hymenoptera, Vespidae) Venom in Mouse Intraperitoneal Macrophages
The social wasp Polybia paulista (Hymenoptera, Vespidae) is highly aggressive, being responsible for many medical occurrences. One of the most allergenic components of this venom is Antigen 5 (Poly p 5). The possible modulation of the in vitro immune response induced by antigen 5 from P. paulista venom, expressed recombinantly (rPoly p 5), on BALB/c mice peritoneal macrophages, activated or not with LPS, was assessed. Here, we analyzed cell viability changes, expression of the phosphorylated form of p65 NF-κB subunit, nitric oxide (NO), proinflammatory cytokines production, and co-stimulatory molecules (CD80, CD86). The results suggest that rPoly p 5 does not affect NO production nor the expression of co-stimulatory molecules in mouse peritoneal macrophages. On the other hand, rPoly p 5 induced an increase in IL-1β production in non-activated macrophages and a reduction in the production of TNF-α and MCP-1 cytokines in activated macrophages. rPoly p 5 decreased the in vitro production of the phosphorylated p65 NF-κB subunit in non-activated macrophages. These findings suggest an essential role of this allergen in the polarization of functional M2 macrophage phenotypes, when analyzed in previously activated macrophages. Further investigations, mainly in in vivo studies, should be conducted to elucidate Polybia paulista Ag5 biological role in the macrophage functional profile modulation
Recombinant phospholipase A1 from Polybia paulista (hymenoptera: vespidae) for specific diagnosis and immunotherapy of venom allergy
sem informaçãosem informação72103136136sem informaçãosem informaçãosem informaçãoCongress of the European-Academy-of-Allergy-and-Clinical-Immunolog
Hyaluronidase from the venom of the social wasp Polybia paulista (Hymenoptera, Vespidae): Cloning, structural modeling, purification, and immunological analysis
In this study, we describe the cDNA cloning, sequencing, and 3-D structure of the allergen hyaluronidase from Polybia paulista venom (Pp-Hyal). Using a proteomic approach, the native form of Pp-Hyal was purified to homogeneity and used to produce a Pp-specific polyclonal antibody. The results revealed that Pp-Hyal can be classified as a glycosyl hydrolase and that the full-length Pp-Hyal cDNA (1315 bp; GI: 302201582) is similar (80-90%) to hyaluronidase from the venoms of endemic Northern wasp species. The isolated mature protein is comprised of 338 amino acids, with a theoretical pI of 8.77 and a molecular mass of 39,648.8 Da versus a pI of 8.13 and 43,277.0 Da indicated by MS. The Pp-Hyal 3D-structural model revealed a central core (α/β)7 barrel, two sulfide bonds (Cys 19-308 and Cys 185-197), and three putative glycosylation sites (Asn79, Asn187, and Asn325), two of which are also found in the rVes v 2 protein. Based on the model, residues Ser299, Asp107, and Glu109 interact with the substrate and potential epitopes (five conformational and seven linear) located at surface-exposed regions of the structure. Purified native Pp-Hyal showed high similarity (97%) with hyaluronidase from Polistes annularis venom (Q9U6V9). Immunoblotting analysis confirmed the specificity of the Pp-Hyal-specific antibody as it recognized the Pp-Hyal protein in both the purified fraction and P. paulista crude venom. No reaction was observed with the venoms of Apis mellifera, Solenopsis invicta, Agelaia pallipes pallipes, and Polistes lanio lanio, with the exception of immune cross-reactivity with venoms of the genus Polybia (sericea and ignobilis). Our results demonstrate cross-reactivity only between wasp venoms from the genus Polybia. The absence of cross-reactivity between the venoms of wasps and bees observed here is important because it allows identification of the insect responsible for sensitization, or at least of the phylogenetically closest insect, in order to facilitate effective immunotherapy in allergic patients. © 2013 Elsevier Ltd