60 research outputs found
Transient pores in vesicles
International audienceWe present our observations of transient pores in giant unilamellar vesicles, placed under tension, by optical illumination. When the membrane tension reached a certain level, transient pores appeared. Pore opening is driven by the membrane tension, s, and its closure by the pore's line tension, T. By use of viscous mixtures of glycerol and water, we slowed down the leak out of the inner liquid in the presence of a pore. This allowed pores to reach large sizes (a few micrometres) and last at least a few seconds so that they could be visualized by fluorescence videomicroscopy. Line tension was inferred from the measurements of the closure velocity of the pores. By addition of cholesterol, which increased T (reducing pore lifetimes), or of surfactants, which decreased T (increasing pore lifetimes), we demonstrate how T , and consequently pore lifetimes, can be controlled over nearly two orders of magnitude. Addition of surfactants also has a dramatic effect on vesicle fusion. We discuss how our results can be extended to less viscous aqueous solutions which are more relevant for liposomal drug delivery formulations
Flow-injection of branched polymers inside nanopores
Flexible chains (linear or branched) can be forced to enter into a narrow
capillary by using a hydrodynamic flow. Here, we correct our earlier
description of this problem by considering the progressive nature of the
suction process. We find that the critical current for penetration, , is
controlled by the entry of a single blob of the capillary size, and that its
scaling structure is the same for branched and linear chains.Comment: Submitted to Europhysics Letter
Polymeric Nanoparticles Limit the Collective Migration of Cellular Aggregates
Controlling the propagation of primary tumors is fundamental to avoiding the epithelial to mesenchymal transition process leading to the dissemination and seeding of tumor cells throughout the body. Here we demonstrate that nanoparticles (NPs) limit the propagation of cell aggregates of CT26 murine carcinoma cells used as tumor models. The spreading behavior of these aggregates incubated with NPs is studied on fibronectin-coated substrates. The cells spread with the formation of a cell monolayer, the precursor film, around the aggregate. We study the effect of NPs added either during or after the formation of aggregates. We demonstrate that, in both cases, the spreading of the cell monolayer is slowed down in the presence of NPs and occurs only above a threshold concentration that depends on the size and surface chemistry of the NPs. The density of cells in the precursor films, measured by confocal microscopy, shows that the NPs stick cells together. The mechanism of slowdown is explained by the increase in cell-cell interactions due to the NPs adsorbed on the membrane of the cells. The present results demonstrate that NPs can modulate the collective migration of cells; therefore, they may have important implications for cancer treatment.Peer reviewe
Transient pores in stretched vesicles: role of leak-out
International audienceWe have visualized macroscopic transient pores in mechanically stretched giant vesicles. They can be observed only if the vesicles are prepared in a viscous solution to slow down the leak-out of the internal liquid. We study here theoretically the full dynamics of growth (driven by surface tension) and closure (driven by line tension) of these large pores. We write two coupled equations of the time evolution of the radii r(t) of the hole and R(t) of the vesicle, which both act on the release of the membrane tension. We find four periods in the life of a transient pore: (I) exponential growth of the young pore; (II) stop of the growth at a maximum radius rm; (III) slow closure limited by the leak-out; (IV) fast closure below a critical radius, when leak-out becomes negligible. Ultimately the membrane is completely resealed
Adhesion of soft objects on wet substrates
International audienceWe study the dynamics of contact of a soft object (rubber bead, soft shell, vesicles, living cells) on a wet substrate by removal of the intercalated liquid film. The profiles of the contact zone are observed by reflection interference contrast microscopy. The adhesion forces (either hydrophobic, electrostatic or specific) are measured by micropipettes, flow cells or `microkarcher' techniques. For vesicles, the adhesion induces a tension of the membrane, which relaxes by the formation of transient macroscopic pores. We study the dynamics of opening and closing of pores
Aspiration of biological viscoelastic drops
Spherical cellular aggregates are in vitro systems to study the physical and
biophysical properties of tissues. We present a novel approach to characterize
the mechanical properties of cellular aggregates using micropipette aspiration
technique. We observe an aspiration in two distinct regimes, a fast elastic
deformation followed by a viscous flow. We develop a model based on this
viscoelastic behavior to deduce the surface tension, viscosity, and elastic
modulus. A major result is the increase of the surface tension with the applied
force, interpreted as an effect of cellular mechanosensing.Comment: 4 pages, 4 figures
Spontaneous migration of cellular aggregates from giant keratocytes to running spheroids
Despite extensive knowledge on the mechanisms that drive singlecell migration, those governing the migration of cell clusters, as occurring during embryonic development and cancer metastasis,remain poorly understood. Here, we investigate the collective migration of cell on adhesive gels with variable rigidity, using 3D cellular aggregates as a model system. After initial adhesion to the substrate, aggregates spread by expanding outward a cell monolayer, whose dynamics is optimal in a narrowrange of rigidities. Fast expansion gives rise to the accumulation of mechanical tension that leads to the rupture of cell–cell contacts and the nucleation of holes within the monolayer, which becomes unstable and undergoes dewetting like a liquid film. This leads to a symmetry breaking and causes the entire aggregate to move as a single entity. Varying the substrate rigidity modulates the extent of dewetting and induces different modes of aggregate motion: “giant keratocytes,” where the lamellipodium is a cell monolayer that expands at the front and retracts at the back; “penguins,” characterized by bipedal locomotion; and “running spheroids,” for nonspreading aggregates. We characterize these diverse
modes of collectivemigration by quantifying the flows and forces that drive them, andwe unveil the fundamental physical principles that govern these behaviors, which underscore the biological predisposition of living material to migrate, independent of length scale
- …