2,086 research outputs found

    Dynamics of Strongly Deformed Polymers in Solution

    Full text link
    Bead spring models for polymers in solution are nonlinear if either the finite extensibility of the polymer, excluded volume effects or hydrodynamic interactions between polymer segments are taken into account. For such models we use a powerful method for the determination of the complete relaxation spectrum of fluctuations at {\it steady state}. In general, the spectrum and modes differ significantly from those of the linear Rouse model. For a tethered polymer in uniform flow the differences are mainly caused by an inhomogeneous distribution of tension along the chain and are most pronounced due to the finite chain extensibility. Beyond the dynamics of steady state fluctuations we also investigate the nonlinear response of the polymer to a {\em large sudden change} in the flow. This response exhibits several distinct regimes with characteristic decay laws and shows features which are beyond the scope of single mode theories such as the dumbbell model.Comment: 7 pages, 3 figure

    Stripes of Partially Fluorinated Alkyl Chains: Dipolar Langmuir Monolayers

    Full text link
    Stripe-like domains of Langmuir monolayers formed by surfactants with partially fluorinated lipid anchors (F-alkyl lipids) are observed at the gas-liquid phase coexistence. The average periodicity of the stripes, measured by fluorescence microscopy, is in the micrometer range, varying between 2 and 8 microns. The observed stripe-like patterns are stabilized due to dipole-dipole interactions between terminal -CF3 groups. These interactions are particularly strong as compared with non-fluorinated lipids due to the low dielectric constant of the surrounding media (air). These long-range dipolar interactions tend to elongate the domains, in contrast to the line tension that tends to minimize the length of the domain boundary. This behavior should be compared with that of the lipid monolayer having alkyl chains, and which form spherical micro-domains (bubbles) at the gas-liquid coexistence. The measured stripe periodicity agrees quantitatively with a theoretical model. Moreover, the reduction in line tension by adding traces (0.1 mol fraction) of cholesterol results, as expected, in a decrease in the domain periodicity.Comment: 20 pages, 4 fig

    Two-loop Functional Renormalization Group of the Random Field and Random Anisotropy O(N) Models

    Full text link
    We study by the perturbative Functional Renormalization Group (FRG) the Random Field and Random Anisotropy O(N) models near d=4d=4, the lower critical dimension of ferromagnetism. The long-distance physics is controlled by zero-temperature fixed points at which the renormalized effective action is nonanalytic. We obtain the beta functions at 2-loop order, showing that despite the nonanalytic character of the renormalized effective action, the theory is perturbatively renormalizable at this order. The physical results obtained at 2-loop level, most notably concerning the breakdown of dimensional reduction at the critical point and the stability of quasi-long range order in d<4d<4, are shown to fit into the picture predicted by our recent non-perturbative FRG approach.Comment: 19 pages, 20 figures. Minor correction

    Simple experimental methods for trapped ion quantum processors

    Get PDF
    Two techniques are described that simplify the experimental requirements for measuring and manipulating quantum information stored in trapped ions. The first is a new technique using electron shelving to measure the populations of the Zeeman sublevels of the ground state, in an ion for which no cycling transition exists from any of these sublevels. The second technique is laser cooling to the vibrational ground state, without the need for a trap operating in the Lamb-Dicke limit. This requires sideband cooling in a sub-recoil regime. We present a thorough analysis of sideband cooling on one or a pair of sidebands simultaneously

    Single-Photon Avalanche Diodes (SPAD) in CMOS 0.35 µm technology

    Get PDF
    International audienceSome decades ago single photon detection used to be the terrain of photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. However, PMT has several disadvantages such as low quantum efficiency, overall dimensions, and cost, making them unsuitable for compact design of integrated systems. So, the past decade has seen a dramatic increase in interest in new integrated single-photon detectors called Single-Photon Avalanche Diodes (SPAD) or Geiger-mode APD. SPAD are working in avalanche mode above the breakdown level. When an incident photon is captured, a very fast avalanche is triggered, generating an easily detectable current pulse.This paper discusses SPAD detectors fabricated in a standard CMOS technology featuring both single-photon sensitivity, and excellent timing resolution, while guaranteeing a high integration. In this work, we investigate the design of SPAD detectors using the AMS 0.35 µm CMOS Opto technology. Indeed, such standard CMOS technology allows producing large surface (few mm2) of single photon sensitive detectors. Moreover, SPAD in CMOS technologies could be associated to electronic readout such as active quenching, digital to analog converter, memories and any specific processing required to build efficient calorimeters1 (Silicon PhotoMultiplier – SiPM) or high resolution imagers (SPAD imager). The present work investigates SPAD geometry. MOS transistor has been used instead of resistor to adjust the quenching resistance and find optimum value. From this first set of results, a detailed study of the dark count rate (DCR) has been conducted. Our results show a dark count rate increase with the size of the photodiodes and the temperature (at T=22.5 °C, the DCR of a 10 µm-photodiode is 2020 count s−1 while it is 270 count s−1 at T=−40 °C for a overvoltage of 800 mV). A small pixel size is desirable, because the DCR per unit area decreases with the pixel size. We also found that the adjustment of overvoltage is very sensitive and depends on the temperature. The temperature will be adjusted for the subsequent experiments

    Interfacial layering in a three-component polymer system

    Full text link
    We study theoretically the temporal evolution and the spatial structure of the interface between two polymer melts involving three different species (A, A* and B). The first melt is composed of two different polymer species A and A* which are fairly indifferent to one another (Flory parameter chi_AA* ~ 0). The second melt is made of a pure polymer B which is strongly attracted to species A (chi_AB 0). We then show that, due to these contradictory tendencies, interesting properties arise during the evolution of the interface after the melts are put into contact: as diffusion proceeds, the interface structures into several adjacent "compartments", or layers, of differing chemical compositions, and in addition, the central mixing layer grows in a very asymmetric fashion. Such unusual behaviour might lead to interesting mechanical properties, and demonstrates on a specific case the potential richness of multi-component polymer interfaces (as compared to conventional two-component interfaces) for various applications.Comment: Revised version, to appear in Macromolecule

    Dark Count rate measurement in Geiger mode and simulation of a photodiode array, with CMOS 0.35 technology and transistor quenching.

    Get PDF
    International audienceSome decades ago single photon detection used to be the terrain of photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. However, PMT has several disadvantages such as low quantum efficiency, overall dimensions, and cost, making them unsuitable for compact design of integrated systems. So, the past decade has seen a dramatic increase in interest in new integrated single-photon detectors called Single-Photon Avalanche Diodes (SPAD) or Geiger-mode APD. SPAD detectors fabricated in a standard CMOS technology feature both single-photon sensitivity, and excellent timing resolution, while guarantying a high integration. SPAD are working in avalanche mode above the breakdown level. When an incident photon is captured, a very fast avalanche is triggered, generating an easily detectable current pulse. In this work, we investigate the design of SPAD detectors using the Austriamicrosystems 0.35 μm CMOS Opto technology. A series of different SPADs has been fabricated and benchmarked in order to evaluate a future integration into a SPAD- based image sensor. The main characteristics of each SPAD operating in Geiger-mode are reported: current voltage, breakdown voltage as a function of temperature. From this first set of results, a detailed study of the Dark Count Rate (DCR) has been conducted. Our results show a dark count rate increase with the size of the photodiodes and the temperature (at T=22.5°C, the DCR of a 10μm-photodiode is 2020 count.s-1 while it is 270 count.s-1 at T=- 40°C for a overvoltage of 800mV). We found that the adjustment of overvoltage is very sensitive and depends on the temperature. The temperature will be adjusted for the subsequent experiments. A mathematical model is presented for reproduce the DCR of a single photodiode. We simulated the noise (DCR) of array of 32x32 photo-detectors. Our results show, of course an increase of DCR of 1024, but especially, the probability of having two pulses simultaneously is 0 (without light). By studying these probabilities of occurrence of the pulses, we think we can reduce the DCR of 50% with a statistical method and reduce the crosstalk of 90%. This study is realized in order to prepare the first digital matrices sensor in Geiger mode

    Nanoscale surface relaxation of a membrane stack

    Full text link
    Recent measurements of the short-wavelength (~ 1--100 nm) fluctuations in stacks of lipid membranes have revealed two distinct relaxations: a fast one (decay rate of ~ 0.1 ns^{-1}), which fits the known baroclinic mode of bulk lamellar phases, and a slower one (~ 1--10 \mu s^{-1}) of unknown origin. We show that the latter is accounted for by an overdamped capillary mode, depending on the surface tension of the stack and its anisotropic viscosity. We thereby demonstrate how the dynamic surface tension of membrane stacks could be extracted from such measurements.Comment: 4 page

    On the size and shape of excluded volume polymers confined between parallel plates

    Full text link
    A number of recent experiments have provided detailed observations of the configurations of long DNA strands under nano-to-micrometer sized confinement. We therefore revisit the problem of an excluded volume polymer chain confined between two parallel plates with varying plate separation. We show that the non-monotonic behavior of the overall size of the chain as a function of plate-separation, seen in computer simulations and reproduced by earlier theories, can already be predicted on the basis of scaling arguments. However, the behavior of the size in a plane parallel to the plates, a quantity observed in recent experiments, is predicted to be monotonic, in contrast to the experimental findings. We analyze this problem in depth with a mean-field approach that maps the confined polymer onto an anisotropic Gaussian chain, which allows the size of the polymer to be determined separately in the confined and unconfined directions. The theory allows the analytical construction of a smooth cross-over between the small plate-separation de Gennes regime and the large plate-separation Flory regime. The results show good agreement with Langevin dynamics simulations, and confirm the scaling predictions.Comment: 15 pages, 3 figure

    Straightening of Thermal Fluctuations in Semi-Flexible Polymers by Applied Tension

    Get PDF
    We investigate the propagation of a suddenly applied tension along a thermally excited semi-flexible polymer using analytical approximations, scaling arguments and numerical simulation. This problem is inherently non-linear. We find sub-diffusive propagation with a dynamical exponent of 1/4. By generalizing the internal elasticity, we show that tense strings exhibit qualitatively different tension profiles and propagation with an exponent of 1/2.Comment: Latex file; with three postscript figures; .ps available at http://dept.physics.upenn.edu/~nelson/pull.p
    corecore