1,901 research outputs found
Interfacial layering in a three-component polymer system
We study theoretically the temporal evolution and the spatial structure of
the interface between two polymer melts involving three different species (A,
A* and B). The first melt is composed of two different polymer species A and A*
which are fairly indifferent to one another (Flory parameter chi_AA* ~ 0). The
second melt is made of a pure polymer B which is strongly attracted to species
A (chi_AB 0). We then show
that, due to these contradictory tendencies, interesting properties arise
during the evolution of the interface after the melts are put into contact: as
diffusion proceeds, the interface structures into several adjacent
"compartments", or layers, of differing chemical compositions, and in addition,
the central mixing layer grows in a very asymmetric fashion. Such unusual
behaviour might lead to interesting mechanical properties, and demonstrates on
a specific case the potential richness of multi-component polymer interfaces
(as compared to conventional two-component interfaces) for various
applications.Comment: Revised version, to appear in Macromolecule
Contact line motion for partially wetting fluids
We study the flow close to an advancing contact line in the limit of small
capillary number. To take into account wetting effects, both long and
short-ranged contributions to the disjoining pressure are taken into account.
In front of the contact line, there is a microscopic film corresponding to a
minimum of the interaction potential. We compute the parameters of the contact
line solution relevant to the matching to a macroscopic problem, for example a
spreading droplet. The result closely resembles previous results obtained with
a slip model
Theoretical study of dislocation nucleation from simple surface defects in semiconductors
Large-scale atomistic calculations, using empirical potentials for modeling
semiconductors, have been performed on a stressed system with linear surface
defects like steps. Although the elastic limits of systems with surface defects
remain close to the theoretical strength, the results show that these defects
weaken the atomic structure, initializing plastic deformations, in particular
dislocations. The character of the dislocation nucleated can be predicted
considering both the resolved shear stress related to the applied stress
orientation and the Peierls stress. At low temperature, only glide events in
the shuffle set planes are observed. Then they progressively disappear and are
replaced by amorphization/melting zones at a temperature higher than 900 K
Helium condensation in aerogel: avalanches and disorder-induced phase transition
We present a detailed numerical study of the elementary condensation events
(avalanches) associated to the adsorption of He in silica aerogels. We use
a coarse-grained lattice-gas description and determine the nonequilibrium
behavior of the adsorbed gas within a local mean-field analysis, neglecting
thermal fluctuations and activated processes. We investigate the statistical
properties of the avalanches, such as their number, size and shape along the
adsorption isotherms as a function of gel porosity, temperature, and chemical
potential. Our calculations predict the existence of a line of critical points
in the temperature-porosity diagram where the avalanche size distribution
displays a power-law behavior and the adsorption isotherms have a universal
scaling form. The estimated critical exponents seem compatible with those of
the field-driven Random Field Ising Model at zero temperature.Comment: 16 pages, 14 figure
Monomer dynamics of a wormlike chain
We derive the stochastic equations of motion for a tracer that is tightly
attached to a semiflexible polymer and confined or agitated by an externally
controlled potential. The generalised Langevin equation, the power spectrum,
and the mean-square displacement for the tracer dynamics are explicitly
constructed from the microscopic equations of motion for a weakly bending
wormlike chain by a systematic coarse-graining procedure. Our accurate
analytical expressions should provide a convenient starting point for further
theoretical developments and for the analysis of various single-molecule
experiments and of protein shape fluctuations.Comment: 6 pages, 4 figure
Liquid-liquid coexistence in the phase diagram of a fluid confined in fractal porous materials
Multicanonical ensemble sampling simulations have been performed to calculate
the phase diagram of a Lennard-Jones fluid embedded in a fractal random matrix
generated through diffusion limited cluster aggregation. The study of the
system at increasing size and constant porosity shows that the results are
independent from the matrix realization but not from the size effects. A
gas-liquid transition shifted with respect to bulk is found. On growing the
size of the system on the high density side of the gas-liquid coexistence curve
it appears a second coexistence region between two liquid phases. These two
phases are characterized by a different behaviour of the local density inside
the interconnected porous structure at the same temperature and chemical
potential.Comment: 5 pages, 4 figures. To be published in Europhys. Letter
Dislocation dipoles and the nucleation of cracks in silicon nanopillars
To understand the brittle to ductile transtion at small scale in silicon nanopillars, plastic deformation of silicon nanopillars was investigated by atomistic simulations. Perfect dislocations were found to be nucleated from surfaces and nano cavities were evidenced resulting from dislocation dipoles annihilation. The formation of such cavities is consistent with previous atomistic calculations showing that the annihilation of dislocation vacancy dipole of perfect shuffle dislocations is associated to the formation of vacancy clusters in silicon and diamond [1]. In nanopillars such cavities contribute to the nucleation of cracks [2]. This mechanism of crack nucleation is relevant to single slip deformation and does not require any interactions between dislocations issued from intersecting glide planes as usually postulated for crack nucleation [3].
Incipient dipoles were also found nucleated on the glide plane swept by dislocations. These incipient dipoles result from bond flips and are similar to the Stone–Wales defects in graphene [4]. These defects could be similar and related to the “dislocations trails” found in the glide plane of dislocations in other deformation conditions, a long time and rather unsolved problem in silicon (see for example [5]). Under the applied stress those incipient dipoles appear to act as new nucleation centers for dislocations located in the glide plane. Those dislocations contribute to dislocation interactions in parallel slip planes and to the formation of nano cracks following the described above mechanism
Dewetting of Glassy Polymer Films
Dynamics and morphology of hole growth in a film of power hardening
viscoplastic solid (yield stress ~ [strain-rate]^n) is investigated. At
short-times the growth is exponential and depends on the initial hole size. At
long-times, for n > 1/3, the growth is exponential with a different exponent.
However, for n < 1/3, the hole growth slows; the hole radius approaches an
asymptotic value as time tends to infinity. The rim shape is highly asymmetric,
the height of which has a power law dependence on the hole radius (exponent
close to unity for 0.25 < n < 0.4). The above results explain recent intriguing
experiments of Reiter, Phys. Rev. Lett, 87, 186101 (2001).Comment: 4 pages, 5 figures, RevTe
Probing structural relaxation in complex fluids by critical fluctuations
Complex fluids, such as polymer solutions and blends, colloids and gels, are
of growing interest in fundamental and applied soft-condensed-matter science. A
common feature of all such systems is the presence of a mesoscopic structural
length scale intermediate between atomic and macroscopic scales. This
mesoscopic structure of complex fluids is often fragile and sensitive to
external perturbations. Complex fluids are frequently viscoelastic (showing a
combination of viscous and elastic behaviour) with their dynamic response
depending on the time and length scales. Recently, non-invasive methods to
infer the rheological response of complex fluids have gained popularity through
the technique of microrheology, where the diffusion of probe spheres in a
viscoelastic fluid is monitored with the aid of light scattering or microscopy.
Here we propose an alternative to traditional microrheology that does not
require doping of probe particles in the fluid (which can sometimes drastically
alter the molecular environment). Instead, our proposed method makes use of the
phenomenon of "avoided crossing" between modes associated with the structural
relaxation and critical fluctuations that are spontaneously generated in the
system.Comment: 4 pages, 4 figure
- …