6 research outputs found

    Hydrogen in transportation applications

    Full text link
    This inaugural event is dedicated to showcasing the renewable/sustainable energy projects of UNLV faculty, staff, students, and collaborators, as well as other external projects underway statewide and nationally. The development and utilization of new technologies to protect the environment, achieve energy independence, and strengthen the economy will be explored. Speakers and poster-session presenters will provide further insight to many ongoing projects and innovative research ideas. Organized by UNLV’s Office of Strategic Energy Programs, the event offers participants the opportunity to learn about energy projects and will encourage networking and collaboration. This symposium is intended for researchers, educators, students, policy makers, public and private-sector energy and environmental professionals, and citizens

    NVREC subtask 1.1: Pre-treatment of lignocellulosic biomass

    Full text link
    The second annual Nevada Renewable Energy Consortium meeting took place at UNLV on August 20. The meeting focused on the current three NVREC program areas: Solar, Biomass and Geothermal. Presentations were made by participating entities and a poster session followed

    Biodistillate Transportation Fuels 2. - Emissions Impacts

    Full text link
    The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE’s peer review process under the supervision of the session organizer. This process requires a minimum of three (3) reviews by industry experts. All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE

    Potential water requirements of increased ethanol fuel in the USA

    No full text
    Abstract Background To mitigate climate impacts associated with energy consumption, renewable fuel policies have been established in the USA that encourage production and use of corn ethanol. Current fuel usage of corn ethanol is approximately 15 billion gallons/year (57 billion liters/year), with nearly all of this in the form of E10 (10% blend in gasoline). There is now interest in increasing fuel ethanol usage to achieve nationwide levels of E20 or greater. Due to lack of capacity and poor economics, cellulosic ethanol cannot contribute significantly to increased fuel ethanol production in the near term. Thus, rapid growth of fuel ethanol usage implies expansion of corn ethanol beyond current levels. The objective of this study was to assess the potential water requirements of expanding corn ethanol to provide for nationwide E20 fuel by 2025. Methods A simple modeling approach was used to assess the water requirements for producing 12.5 billion gallons (47.3 billion liters) corn ethanol in the baseline year of 2013 and 24.3 billion gallons (92.0 billion liters) in three future year scenarios of 2025. Irrigation water and process water were considered but not natural rainfall. Baseline inputs regarding corn acreage, crop yields, and irrigation patterns were obtained from the USDA’s National Agricultural Statistics Service (NASS) for each of the 29 corn-producing states in the USA. The three future year scenarios differed in how the required expansion of corn cropping was allocated across the states, thereby resulting in different irrigation patterns. Results As a consequence of differing irrigation requirements, the water intensity of corn ethanol (L water/L ethanol) varied by approximately two orders of magnitude over the 29 corn-producing states. In the 2013 baseline, the water intensity of corn ethanol in Iowa (with 1% irrigated corn acreage) was 5.5 L/L, while that in neighboring Nebraska (with 56% irrigated corn acreage) was 427 L/L. All three future year scenarios result in substantial increases in total volumetric water requirements—from 62 to 161% compared to the 2013 baseline. Conclusions Increasing ethanol blend fuels from E10 to E20 in the near future will require significant expansion of corn cropping in the USA, which will increase irrigation demands. The amount of increased water usage will depend upon the geographic distribution of the cropping expansion. Expansion into already water-stressed areas will exacerbate existing water concerns

    Analysis of Solid and Aqueous Phase Products from Hydrothermal Carbonization of Whole and Lipid-Extracted Algae

    No full text
    Microalgae have tremendous potential as a feedstock for production of liquid biofuels, particularly biodiesel fuel via transesterification of algal lipids. However, biodiesel production results in significant amounts of algal residues, or “lipid extracted algae” (LEA). Suitable utilization of the LEA residue will improve the economics of algal biodiesel. In the present study, we evaluate the hydrothermal carbonization (HTC) of whole and lipid extracted algal (Spirulina maxima) feedstocks in order to produce a solid biofuel (hydrochar) and value-added co-products in the aqueous phase. HTC experiments were performed using a 2-L Parr reactor (batch type) at 175–215 °C with a 30-min holding time. Solid, aqueous and gaseous products were analyzed using various laboratory methods to evaluate the mass and carbon balances, and investigate the existence of high value chemicals in the aqueous phase. The HTC method is effective in creating an energy dense, solid hydrochar from both whole algae and LEA at lower temperatures as compared to lignocellulosic feedstocks, and is effective at reducing the ash content in the resulting hydrochar. However, under the treatment temperatures investigated, less than 1% of the starting dry algae mass was recovered as an identified high-value chemical in the aqueous phase
    corecore