21 research outputs found

    Panchromatic Imaging of a Transitional Disk: The Disk of GM Aur in Optical and FUV Scattered Light

    Full text link
    We have imaged GM Aur with HST, detected its disk in scattered light at 1400A and 1650A, and compared these with observations at 3300A, 5550A, 1.1 microns, and 1.6 microns. The scattered light increases at shorter wavelengths. The radial surface brightness profile at 3300A shows no evidence of the 24AU radius cavity that has been previously observed in sub-mm observations. Comparison with dust grain opacity models indicates the surface of the entire disk is populated with sub-micron grains. We have compiled an SED from 0.1 microns to 1 mm, and used it to constrain a model of the star+disk system that includes the sub-mm cavity using the Monte Carlo Radiative Transfer code by Barbara Whitney. The best-fit model image indicates that the cavity should be detectable in the F330W bandpass if the cavity has been cleared of both large and small dust grains, but we do not detect it. The lack of an observed cavity can be explained by the presence of sub-microns grains interior to the sub-mm cavity wall. We suggest one explanation for this which could be due to a planet of mass <9 Jupiter masses interior to 24 AU. A unique cylindrical structure is detected in the FUV data from the Advanced Camera for Surveys/Solar Blind Channel. It is aligned along the system semi-minor axis, but does not resemble an accretion-driven jet. The structure is limb-brightened and extends 190 +/- 35 AU above the disk midplane. The inner radius of the limb-brightening is 40 +/- 10 AU, just beyond the sub-millimeter cavity wall.Comment: 40 pages, 11 figures, 4 tables, accepted to Ap

    Kinetics of Ga(NOTA) Formation from Weak Ga-Citrate Complexes

    No full text
    International audienceGallium complexes are gaining increasing importance in biomedical imaging thanks to the practical advantages of the (68)Ga isotope in Positron Emission Tomography (PET) applications. (68)Ga has a short half-time (t(1/2) = 68 min); thus the (68)Ga complexes have to be prepared in a limited time frame. The acceleration of the formation reaction of gallium complexes with macrocyclic ligands for application in PET imaging represents a significant coordination chemistry challenge. Here we report a detailed kinetic study of the formation reaction of the highly stable Ga(NOTA) from the weak citrate complex (H(3)NOTA = 1,4,7-triazacyclononane-1,4,7- triacetic acid). The transmetalation has been studied using (71)Ga NMR over a large pH range (pH = 2.01-6.00). The formation of Ga(NOTA) is a two-step process. First, a monoprotonated intermediate containing coordinated citrate, GaHNOTA(citrate)*, forms in a rapid equilibrium step. The rate-determining step of the reaction is the deprotonation and slow rearrangement of the intermediate accompanied by the citrate release. The observed reaction rate shows an unusual pH dependency with a minimum at pH 5.17. In contrast to the typical formation reactions of poly(amino carboxylate) complexes, the Ga(NOTA) formation from the weak citrate complex becomes considerably faster with increasing proton concentration below pH 5.17. We explain this unexpected tendency by the role of protons in the decomposition of the GaHNOTA(citrate)* intermediate which proceeds via the protonation of the coordinated citrate ion and its subsequent decoordination to yield the final product Ga(NOTA). The stability constant of this intermediate, log K(GaHNOTA(citrate)*) = 15.6, is remarkably high compared to the corresponding values reported for the formation of macrocyclic lanthanide(III)-poly(amino carboxylates). These kinetic data do not only give mechanistic insight into the formation reaction of Ga(NOTA), but might also contribute to establish optimal experimental conditions for the rapid preparation of Ga(NOTA)-based radiopharmaceuticals for PET applications
    corecore