1,487 research outputs found
Perturbative Part of the Non-Singlet Structure Function F_2 in the Large-N_F Limit
We have calculated Wilson coefficients and anomalous dimensions
for the non-singlet part of the structure function F_2 in the large-N_F limit.
Our result agrees with exact two and three loop calculations and gives the
leading N_F dependence of the perturbative non-singlet Wilson coefficients to
all orders in .Comment: 11 pages, including one figur
Two-loop two-point functions with masses: asymptotic expansions and Taylor series, in any dimension
In all mass cases needed for quark and gluon self-energies, the two-loop
master diagram is expanded at large and small , in dimensions, using
identities derived from integration by parts. Expansions are given, in terms of
hypergeometric series, for all gluon diagrams and for all but one of the quark
diagrams; expansions of the latter are obtained from differential equations.
Pad\'{e} approximants to truncations of the expansions are shown to be of great
utility. As an application, we obtain the two-loop photon self-energy, for all
, and achieve highly accelerated convergence of its expansions in powers of
or , for .Comment: 25 pages, OUT--4102--43, BI--TP/92--5
Signaling local non-credibility in an automatic segmentation pipeline
The advancing technology for automatic segmentation of medical images should be accompanied by techniques to inform the user of the local credibility of results. To the extent that this technology produces clinically acceptable segmentations for a significant fraction of cases, there is a risk that the clinician will assume every result is acceptable. In the less frequent case where segmentation fails, we are concerned that unless the user is alerted by the computer, she would still put the result to clinical use. By alerting the user to the location of a likely segmentation failure, we allow her to apply limited validation and editing resources where they are most needed. We propose an automated method to signal suspected non-credible regions of the segmentation, triggered by statistical outliers of the local image match function. We apply this test to m-rep segmentations of the bladder and prostate in CT images using a local image match computed by PCA on regional intensity quantile functions. We validate these results by correlating the non-credible regions with regions that have surface distance greater than 5.5mm to a reference segmentation for the bladder. A 6mm surface distance was used to validate the prostate results. Varying the outlier threshold level produced a receiver operating characteristic with area under the curve of 0.89 for the bladder and 0.92 for the prostate. Based on this preliminary result, our method has been able to predict local segmentation failures and shows potential for validation in an automatic segmentation pipeline
A Free-Form Lensing Grid Solution for A1689 with New Mutiple Images
Hubble Space Telescope imaging of the galaxy cluster Abell 1689 has revealed
an exceptional number of strongly lensed multiply-imaged galaxies, including
high-redshift candidates. Previous studies have used this data to obtain the
most detailed dark matter reconstructions of any galaxy cluster to date,
resolving substructures ~25 kpc across. We examine Abell 1689 (hereafter,
A1689) non-parametrically, combining strongly lensed images and weak
distortions from wider field Subaru imaging, and we incorporate member galaxies
to improve the lens solution. Strongly lensed galaxies are often locally
affected by member galaxies, however, these perturbations cannot be recovered
in grid based reconstructions because the lensing information is too sparse to
resolve member galaxies. By adding luminosity-scaled member galaxy deflections
to our smooth grid we can derive meaningful solutions with sufficient accuracy
to permit the identification of our own strongly lensed images, so our model
becomes self consistent. We identify 11 new multiply lensed system candidates
and clarify previously ambiguous cases, in the deepest optical and NIR data to
date from Hubble and Subaru. Our improved spatial resolution brings up new
features not seen when the weak and strong lensing effects are used separately,
including clumps and filamentary dark matter around the main halo. Our
treatment means we can obtain an objective mass ratio between the cluster and
galaxy components, for examining the extent of tidal stripping of the luminous
member galaxies. We find a typical mass-to-light ratios of M/L_B = 21 inside
the r<1 arcminute region that drops to M/L_B = 17 inside the r<40 arcsecond
region. Our model independence means we can objectively evaluate the
competitiveness of stacking cluster lenses for defining the geometric
lensing-distance-redshift relation in a model independent way.Comment: 23 pages with 25 figures Replced with MNRAS submitted version. Some
figures have been corrected and minor text edit
Young Red Spheroidal Galaxies in the Hubble Deep Fields: Evidence for a Truncated IMF at ~2M_solar and a Constant Space Density to z~2
The optical-IR images of the Northern and Southern Hubble Deep Fields are
used to measure the spectral and density evolution of early-type galaxies. The
mean optical SED is found to evolve passively towards a mid F-star dominated
spectrum by z ~ 2. We demonstrate with realistic simulations that hotter
ellipticals would be readily visible if evolution progressed blueward and
brightward at z > 2, following a standard IMF. The colour distributions are
best fitted by a `red' IMF, deficient above ~2 M_solar and with a spread of
formation in the range 1.5 < z_f < 2.5. Traditional age dating is spurious in
this context, a distant elliptical can be young but appear red, with an
apparent age >3 Gyrs independent of its formation redshift. Regarding density
evolution, we demonstrate that the sharp decline in numbers claimed at z > 1
results from a selection bias against distant red galaxies in the optical,
where the flux is too weak for morphological classification, but is remedied
with relatively modest IR exposures revealing a roughly constant space density
to z ~ 2. We point out that the lack of high mass star-formation inferred here
and the requirement of metals implicates cooling-flows of pre-enriched gas in
the creation of the stellar content of spheroidal galaxies. Deep-field X-ray
images will be very helpful to examine this possibility.Comment: 6 pages, 3 figures, submitted to Astrophysical Journal Letters,
typographical errors corrected, simulated images with different IMFs
illustrated at http://astro.berkeley.edu/~bouwens/ellip.htm
Combining weak and strong lensing in cluster potential reconstruction
We propose a method for recovering the two-dimensional gravitational
potential of galaxy clusters which combines data from weak and strong
gravitational lensing. A first estimate of the potential from weak lensing is
improved at the approximate locations of critical curves. The method can be
fully linearised and does not rely on the existence and identification of
multiple images. We use simulations to show that it recovers the surface-mass
density profiles and distributions very accurately, even if critical curves are
only partially known and if their location is realistically uncertain. We
further describe how arcs at different redshifts can be combined, and how
deviations from weak lensing can be included.Comment: 9 pages, 5 figures, A&A in press, changes to match the accepted
versio
Using Weak Lensing Dilution to Improve Measurements of the Luminous and Dark Matter in A1689
The E/SO sequence of a cluster defines a boundary redward of which a reliable
weak lensing signal can be obtained from background galaxies, uncontaminated by
cluster members. For bluer colors, both background and cluster members are
present, reducing the distortion signal by the proportion of unlensed cluster
members. In deep Subaru and HST/ACS images of A1689 the tangential distortion
of galaxies with bluer colors falls rapidly toward the cluster center relative
to the lensing signal of the red background. We use this dilution effect to
derive the cluster light profile and luminosity function to large radius, with
the advantage that no subtraction of far-field background counts is required.
The light profile declines smoothly to the limit of the data, r<2Mpc/h, with a
constant slope, dlog(L)/dlog(r)=-1.12+-0.06, unlike the lensing mass profile
which steepens continuously with radius, so that M/L peaks at an intermediate
radius, ~100kpc/h. A flatter behavior is found for the more physically
meaningful ratio of dark-matter to stellar-matter, when accounting for the
color-mass relation of cluster members. The cluster luminosity function has a
flat slope, alpha=-1.05+-0.07, independent of radius and with no faint upturn
to M_i'<-12. We establish that the very bluest objects are negligibly
contaminated by the cluster V-i'<0.2, because their distortion profile rises
towards the center following the red background, but offset higher by ~20%.
This larger amplitude is consistent with the greater estimated depth of the
faint blue galaxies, z~=2.0 compared to z~=0.85 for the red background, a
purely geometric effect related to cosmological parameters. Finally, we improve
upon our earlier mass profile by combining both the red and blue background
populations, clearly excluding low concentration CDM profiles.Comment: 17 pages, 21 figures, revised version in response to referee
comments,(added some discussion, references), conclusions unchanged. Accepted
for publication in Ap
BIMA and Keck Imaging of the Radio Ring PKS 1830-211
We discuss BIMA (Berkeley Illinois Maryland Association) data and present new
high quality optical and near-IR Keck images of the bright radio ring PKS
1830-211. Applying a powerful new deconvolution algorithm we have been able to
identify both images of the radio source. In addition we recover an extended
source in the optical, consistent with the expected location of the lensing
galaxy. The source counterparts are very red, I-K=7, suggesting strong Galactic
absorption with additional absorption by the lensing galaxy at z=0.885, and
consistent with the detection of high redshift molecules in the lens.Comment: To be published in the ASP Conference Proceedings, 'Highly Redshifted
Radio Lines', Greenbank, W
Merleau-Ponty and neuroaesthetics: Two approaches to performance and technology
This is an Author's Accepted Manuscript of an article published in Digital Creativity, 23(3-4), 225 - 238, 2012. Copyright @ 2012 Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/14626268.2012.709941.Assisted by the rapid growth of digital technology, which has enhanced its ambitions, performance is an increasingly popular area of artistic practice. This article seeks to contextualise this within two methodologically divergent yet complimentary intellectual tendencies. The first is the work of the philosopher Merleau-Ponty, who recognised that our experience of the world has an inescapably âembodiedâ quality, not reducible to mental accounts, which can be vicariously extended through specific instrumentation. The second is the developing field of neuroaesthetics; that is, neurological research directed towards the analysis, in brain-functional terms, of our experiences of objects and events which are culturally deemed to be of artistic significance. I will argue that both these contexts offer promising approaches to interpreting developments in contemporary performance, which has achieved critical recognition without much antecedent theoretical support
Cloning Hubble Deep Fields I: A Model-Independent Measurement of Galaxy Evolution
We present a model-independent method of quantifying galaxy evolution in
high-resolution images, which we apply to the Hubble Deep Field (HDF). Our
procedure is to k-correct all pixels belonging to the images of a complete set
of bright galaxies and then to replicate each galaxy image to higher redshift
by the product of its space density, 1/V_{max}, and the cosmological volume.
The set of bright galaxies is itself selected from the HDF, because presently
the HDF provides the highest quality UV images of a redshift-complete sample of
galaxies (31 galaxies with I<21.9, \bar{z}=0.5, and for which V/V_{max} is
spread fairly). These galaxies are bright enough to permit accurate
pixel-by-pixel k-corrections into the restframe UV (\sim 2000 A). We match the
shot noise, spatial sampling and PSF smoothing of the HDF data, resulting in
entirely empirical and parameter-free ``no-evolution'' deep fields of galaxies
for direct comparison with the HDF. In addition, the overcounting rate and the
level of incompleteness can be accurately quantified by this procedure. We
obtain the following results. Faint HDF galaxies (I>24) are much smaller, more
numerous, and less regular than our ``no-evolution'' extrapolation, for any
interesting geometry. A higher proportion of HDF galaxies ``dropout'' in both U
and B, indicating that some galaxies were brighter at higher redshifts than our
``cloned'' z\sim0.5 population.Comment: 51 pages, 23 figures, replacement includes figures not previously
include
- âŠ