8 research outputs found

    Addressing fluorogenic real-time qPCR inhibition using the novel custom Excel file system 'FocusField2-6GallupqPCRSet-upTool-001' to attain consistently high fidelity qPCR reactions

    Get PDF
    The purpose of this manuscript is to discuss fluorogenic real-time quantitative polymerase chain reaction (qPCR) inhibition and to introduce/define a novel Microsoft Excel-based file system which provides a way to detect and avoid inhibition, and enables investigators to consistently design dynamically-sound, truly LOG-linear qPCR reactions very quickly. The qPCR problems this invention solves are universal to all qPCR reactions, and it performs all necessary qPCR set-up calculations in about 52 seconds (using a pentium 4 processor) for up to seven qPCR targets and seventy-two samples at a time – calculations that commonly take capable investigators days to finish. We have named this custom Excel-based file system "FocusField2-6GallupqPCRSet-upTool-001" (FF2-6-001 qPCR set-up tool), and are in the process of transforming it into professional qPCR set-up software to be made available in 2007. The current prototype is already fully functional

    The Peter Pan paradigm

    Get PDF
    Genetic and environmental agents that disrupt organogenesis are numerous and well described. Less well established, however, is the role of delay in the developmental processes that yield functionally immature tissues at birth. Evidence is mounting that organs do not continue to develop postnatally in the context of these organogenesis insults, condemning the patient to utilize under-developed tissues for adult processes. These poorly differentiated organs may appear histologically normal at birth but with age may deteriorate revealing progressive or adult-onset pathology. The genetic and molecular underpinning of the proposed paradigm reveals the need for a comprehensive systems biology approach to evaluate the role of maternal-fetal environment on organogenesis

    Temporal regulation of CFTR expression during ovine lung development: implications for CF gene therapy.

    No full text
    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a small conductance chloride ion channel that may interact directly with other channels including the epithelial sodium channel (ENaC). CFTR is known to be more abundant in the airway epithelium during the second trimester of human development than after birth. This could be a consequence of the change in function of the respiratory epithelium from chloride secretion to sodium absorption near term. Alternatively it might reflect an additional role for CFTR in the developing airway epithelium. Though the lung epithelia of CF fetuses and infants rarely show gross histological abnormalities, there is often evidence of inflammation. Our aim was to establish whether CFTR expression levels correlated with specific developmental stages or differentiated functions in the ovine fetal lung. We evaluated CFTR expression using a quantitative assay of mRNA at 14 time points through gestation and showed highest levels at the start of the second trimester followed by a gradual decline through to term. In contrast, ENaC expression increased from the start of the third trimester. These results support a role for CFTR in differentiation of the respiratory epithelium and suggest that its expression levels are not merely reflecting major changes in the sodium/chloride bulk flow close to term. These observations may have significant implications for the likely success of CF gene therapy in the postnatal lung
    corecore