232 research outputs found

    Tumor location on electroporation therapies by means of multi-electrode structures and machine learning

    Get PDF
    Electroporation is a phenomenon produced in the cell membrane when it is exposed to high pulsed electric fields that increases its permeability. Among other application fields, this phenomenon can be exploited in a clinical environment for tumor ablation therapies. In this context to achieve optimum results, it is convenient to focus the treatment on the tumor tissue to minimize side effects. In this work, a pre-treatment tumor location method is developed, with the purpose of being able to precisely target the therapy. This is done by taking different impedance measurements with a multi-output electroporation generator in conjunction with a multi-electrode structure. Data are processed by means of a vector of independent artificial neural networks, trained and tested with simulation data, and validated with phantom gels. This algorithm proved to provide suitable accuracy in spite of the low electrode count compared to the number of electrodes of a standard electrical impedance tomography device

    NR1H4 (nuclear receptor subfamily 1, group H, member 4)

    Get PDF
    Review on NR1H4, with data on DNA/RNA, on the protein encoded and where the gene is implicated

    Systematic trends in beta-delayed particle emitting nuclei: The case of beta-p-alpha emission from 21Mg

    Get PDF
    We have observed beta+-delayed alpha and p-alpha emission from the proton-rich nucleus 21Mg produced at the ISOLDE facility at CERN. The assignments were cross-checked with a time distribution analysis. This is the third identified case of beta-p-alpha emission. We discuss the systematic of beta-delayed particle emission decays, show that our observed decays fit naturally into the existing pattern, and argue that the patterns are to a large extent caused by odd-even effects.Comment: 6 pages, 5 figure
    corecore