9,672 research outputs found

    The Anisoplanatic Point Spread Function in Adaptive Optics

    Get PDF
    The effects of anisoplanatism on the adaptive optics point spread function are investigated. A model is derived that combines observations of the guide star with an analytic formulation of anisoplanatism to generate predictions for the adaptive optics point spread function at arbitrary locations within the field of view. The analytic formulation captures the dependencies of anisoplanatism on aperture diameter, observing wavelength, angular offset, zenith angle and turbulence profile. The predictions of this model are compared to narrowband 2.12 um and 1.65 um images of a 21 arcsec binary (mV=7.3, 7.6) acquired with the Palomar Adaptive Optics System on the Hale 5 meter telescope. Contemporaneous measurements of the turbulence profile made with a DIMM/MASS unit are used together with images of the primary to predict the point spread function of the binary companion. Predicted companion Strehl ratios are shown to match measurements to within a few percent, whereas predictions based on the isoplanatic angle approximation are highly discrepant. The predicted companion point spread functions are shown to agree with observations to 10%. These predictions are used to measure the differential photometry between binary members to an accuracy of 1 part in 10^{3}, and the differential astrometry to an accuracy of 1 mas. Errors in the differential astrometry are shown to be dominated by differential atmospheric tilt jitter. These results are compared to other techniques that have been employed for photometry, astrometry, and high contrast imaging.Comment: 26 pages, 7 figure

    Passive Cooling of a Micromechanical Oscillator with a Resonant Electric Circuit

    Full text link
    We cool the fundamental mode of a miniature cantilever by capacitively coupling it to a driven rf resonant circuit. Cooling results from the rf capacitive force, which is phase shifted relative to the cantilever motion. We demonstrate the technique by cooling a 7 kHz cantilever from room temperature to 45 K, obtaining reasonable agreement with a model for the cooling, damping, and frequency shift. Extending the method to higher frequencies in a cryogenic system could enable ground state cooling and may prove simpler than related optical experiments in a low temperature apparatus.Comment: 4 pages, 4 figures; minor changes to match published versio

    Doctors' knowledge of patient radiation exposure from diagnostic imaging requested in the emergency department

    Get PDF
    Objective: To assess emergency department (ED) doctors' knowledge of radiation doses associated with diagnostic imaging and to describe their practice with regard to informing patients of risk. Design, participants and setting: Prospective, questionnaire-based observational study in May 2009 among all 110 doctors in the EDs of a 570-bed teaching hospital and a 200-bed district hospital. Main outcome measures: Percentage knowledge score; and frequency of discussing radiation risk with patients, based on responses to three scenarios rated on a visual analogue scale (VAS), where a score of 100 indicates doctors would always discuss it. Results: 96 doctors (87%) completed the questionnaire. The overall mean knowledge score was 40% (95% CI, 38%-43%). Senior doctors scored somewhat higher than junior doctors, but not significantly (42% v 39%; P = 0.75). Over three-quarters of doctors (78%) underestimated the lifetime risk of fatal cancer attributable to a single computed tomography scan of the abdomen. Most doctors (76%) reported never having had any formal training on risks to patients from radiation exposure. The frequency at which doctors would inform patients of the risk of radiation varied greatly depending on the clinical scenario (mean VAS scores, between 38 and 90). Conclusion: Emergency doctors in our sample had a varied knowledge of the risks from radiation exposure, but overall knowledge was poor. Staff should receive education, and the diagnostic imaging request process may need to include information on radiation doses and risks.Griffith Health, School of MedicineFull Tex

    Quantum information processing with trapped ions

    Full text link
    Experiments directed towards the development of a quantum computer based on trapped atomic ions are described briefly. We discuss the implementation of single qubit operations and gates between qubits. A geometric phase gate between two ion qubits is described. Limitations of the trapped-ion method such as those caused by Stark shifts and spontaneous emission are addressed. Finally, we describe a strategy to realize a large-scale device.Comment: Article submitted by D. J. Wineland ([email protected]) for proceeding of the Discussion Meeting on Practical Realisations of Quantum Information Processing, held at the Royal Society, Nov. 13,14, 200
    • …
    corecore