8 research outputs found

    Primary Cardiac Sarcoma: A Rare, Aggressive Malignancy with a High Propensity for Brain Metastases.

    Get PDF
    Introduction: Primary cardiac sarcoma (PCS) has a poor prognosis compared to other sarcomas due to late presentation, challenging resection, incidence of metastases, and limited efficacy of systemic therapies. Methods: A medical record search engine was queried to identify patients diagnosed with PCS from 1992 to 2017 at the University of Michigan. Results: Thirty-nine patients with PCS had a median age of 41 years (range 2-77). Common histologies were angiosarcoma (AS, 14), high-grade undifferentiated pleomorphic sarcoma (UPS, 10), and leiomyosarcoma (LMS, 5). Sites of origin were left atrium (18), right atrium (16), and pericardium (5). AS was the most common right-sided tumor; UPS was more common on the left. Eighteen patients presented with metastases involving lung (10), bone (7), liver (5), and brain (4). Twenty-five patients underwent resection, achieving 3 R Conclusions: PCS portends a poor prognosis, because of difficulty in obtaining complete resection of sarcoma, advanced stage at diagnosis, and high risk of brain metastases. Providers should be aware of the increased risk of brain metastases and consider brain imaging at diagnosis and follow-up

    Development and validation of a unifying pre-treatment decision tool for intracranial and extracranial metastasis-directed radiotherapy

    Get PDF
    BackgroundThough metastasis-directed therapy (MDT) has the potential to improve overall survival (OS), appropriate patient selection remains challenging. We aimed to develop a model predictive of OS to refine patient selection for clinical trials and MDT.Patients and methodsWe assembled a multi-institutional cohort of patients treated with MDT (stereotactic body radiation therapy, radiosurgery, and whole brain radiation therapy). Candidate variables for recursive partitioning analysis were selected per prior studies: ECOG performance status, time from primary diagnosis, number of additional non-target organ systems involved (NOS), and intracranial metastases.ResultsA database of 1,362 patients was assembled with 424 intracranial, 352 lung, and 607 spinal treatments (n=1,383). Treatments were split into training (TC) (70%, n=968) and internal validation (IVC) (30%, n=415) cohorts. The TC had median ECOG of 0 (interquartile range [IQR]: 0-1), NOS of 1 (IQR: 0-1), and OS of 18 months (IQR: 7-35). The resulting model components and weights were: ECOG = 0, 1, and > 1 (0, 1, and 2); 0, 1, and > 1 NOS (0, 1, and 2); and intracranial target (2), with lower scores indicating more favorable OS. The model demonstrated high concordance in the TC (0.72) and IVC (0.72). The score also demonstrated high concordance for each target site (spine, brain, and lung).ConclusionThis pre-treatment decision tool represents a unifying model for both intracranial and extracranial disease and identifies patients with the longest survival after MDT who may benefit most from aggressive local therapy. Carefully selected patients may benefit from MDT even in the presence of intracranial disease, and this model may help guide patient selection for MDT

    The Midwest Sarcoma Trials Partnership: Bridging Academic and Community Networks in a Collaborative Approach to Sarcoma

    No full text
    The treatment of sarcoma necessitates a collaborative approach, given its rarity and complex management. At a single institution, multidisciplinary teams of specialists determine and execute treatment plans involving surgical, radiation, and medical management. Treatment guidelines for systemic therapies in advanced or nonresectable soft tissue sarcoma have advanced in recent years as new immunotherapies and targeted therapies become available. Collaboration between institutions is necessary to facilitate accrual to clinical trials. Here, we describe the success of the Midwest Sarcoma Trials Partnership (MWSTP) in creating a network encompassing large academic centers and local community sites. We propose a new model utilizing online platforms to expand the reach of clinical expertise for the treatment of advanced soft tissue sarcoma
    corecore