7 research outputs found

    Data-Driven Proxy Models for Improving Advanced Well Completion Design under Uncertainty

    No full text
    In order to improve the design of advanced wells, the performance of such wells needs to be carefully assessed by taking the reservoir uncertainties into account. This research aimed to develop data-driven proxy models for the simulation and assessment of oil recovery through advanced wells under uncertainty. An artificial neural network (ANN) was employed to create accurate and computationally efficient proxy models as an alternative to physics-based integrated well–reservoir models created by the Eclipse® reservoir simulator. The simulation speed and accuracy of the data-driven proxy models compared to physic-driven models were then evaluated. The evaluation showed that while the developed proxy models are 350 times faster, they can predict the production of oil and unwanted fluids through advanced wells with a mean error of less than 1% and 4%, respectively. As a result, the data-driven proxy models can be considered an efficient tool for uncertainty analysis where several simulations need to be performed to cover all possible scenarios. In this study, the developed proxy models were applied for uncertainty quantification of oil recovery from advanced wells completed with different types of downhole flow control devices (FCDs). According to the obtained results, compared to other types of well completion design, advanced wells completed with autonomous inflow control valve (AICV) technology have the best performance in limiting the production of unwanted fluids and are able to reduce the associated risk by 91%

    Completion Performance Evaluation in Multilateral Wells Incorporating Single and Multiple Types of Flow Control Devices Using Grey Wolf Optimizer

    No full text
    There has been a tendency in oil and gas industry towards the adoption of multilateral wells (MLWs) with completions that incorporate multiple types of flow control devices (FCDs). In this completion technique, passive inflow control devices (ICDs) or autonomous inflow control devices (AICDs) are positioned within the laterals, while interval control valves (ICVs) are installed at lateral junctions to regulate the overall flow from each lateral. While the outcomes observed in real field applications appear promising, the efficacy of this specific downhole completion combination has yet to undergo comparative testing against alternative completion methods that employ a singular flow control device type. Additionally, the design and current evaluations of such completions are predominantly based on analytical tools that overlook dynamic reservoir behavior, long-term production impacts, and the correlation effects among different devices. In this study, we explore the potential of integrating various types of flow control devices within multilateral wells, employing dynamic optimization process using numerical reservoir simulator while the Grey Wolf Optimizer (GWO) is used as optimization algorithm. The Egg benchmark reservoir model is utilized and developed with two dual-lateral wells. These wells serve as the foundation for implementing and testing 22 distinct completion cases considering single-type and multiple types of flow control devices under reactive and proactive management strategies. This comprehensive investigation aims to shed light on the advantages and limitations of these innovative completion methods in optimizing well and reservoir performance. Our findings revealed that the incorporation of multiple types of FCDs in multilateral well completions significantly enhance well performance and can surpass single-type completions including ICDs or AICDs. However, this enhancement depends on the type of the device implemented inside the lateral and the control strategy that is used to control the ICVs at the lateral junctions. The best performance of multiple-type FCD-based completion was achieved through combining AICDs with reactive ICVs which achieved around 75 million USD profit. This represents 42% and 22% increase in the objective function compared to single-type ICDs and AICDs installations, respectively. The optimal settings for ICD and AICD in individual applications may significantly differ from the optimal settings when combined with ICVs. This highlights a strong correlation between the different devices (control variables), proving that using either a common, simplified analytical, or a standard sequential optimization approach that do not explore this inter-dependence between devices would result in sub-optimal solutions in such completion cases. Notably, the ICV-based completion, where only ICVs are installed with lateral completion, demonstrated superior performance, particularly when ICVs are reactively controlled, resulting in an impressive 80 million USD NPV which represents 53% and 30% increase in the objective function compared to single-type ICDs and AICDs installations, respectively

    Bridging the Performance Gap between Passive and Autonomous Inflow Control Devices with a Hybrid Dynamic Optimization Technique Integrating Machine Learning and Global Sensitivity Analysis

    No full text
    Wells equipped with flow control devices across their completion intervals have become a proven field development option for geologically complex and/or viscous oil reservoirs. Such wells increase oil recovery, reduce water and gas production, minimize the need for well workover operations, and subsequently lower the wells' carbon footprint. The uncontrolled types of inflow control devices include early-generation passive inflow control devices (ICDs) and later-generation autonomous inflow control devices (AICDs). The superior performance of AICDs over ICDs in managing water and gas production, as well as enhancing the overall well and reservoir performance has been demonstrated in multiple research and case studies. This superiority stems from the AICDs’ ability to self-adjust and increase their flow resistance when undesired fluids (i.e., water and/or gas) flow through them. While ICDs lack this self-adjusting feature, they are more affordable and more readily available on the market. This study aims to reduce the performance gap between passive and autonomous inflow control devices by developing a hybrid dynamic optimization technique. This approach integrates a metaheuristic algorithm, machine learning, global sensitivity analysis, and correlation measures to facilitate the optimization problem by identifying the high-impact control variables. Next, the proposed workflow finds the necessary adjustments to the original well completion design by modifying the high-impact control variables during the optimization process. This results in a modified well completion design that is less influenced by the type of inflow control device (passive or autonomous), thereby bridging the performance gap between these two completion types. The study employs a benchmark ‘Egg field’ model, featuring two multilateral wells (MLWs) producing under a water flooding recovery mechanism. Two different completion designs, utilizing either ICDs or AICDs, are optimized using standard optimization (SO) and the proposed hybrid dynamic optimization techniques. The standard optimization, which employs a standalone Particle Swarm Optimization (PSO) algorithm, highlights, as expected, the superiority of the AICD-based completion, yielding an approximately 13% increase in the net present value (NPV) over the ICD-based completion. However, when applying the hybrid optimization (HO) technique, this difference is significantly reduced to 3.4%. This indicates the potential for the hybrid optimization technique to make ICD-based completions more competitive and economically favourable compared to their AICD-based counterparts

    Image Processing and Measurement of the Bubble Properties in a Bubbling Fluidized Bed Reactor

    No full text
    The efficiency of a fluidized bed reactor depends on the bed fluid dynamic behavior, which is significantly influenced by the bubble properties. This work investigates the bubble properties of a bubbling fluidized bed reactor using computational particle fluid dynamic (CPFD) simulations and electrical capacitance tomography (ECT) measurements. The two-dimensional images (along the reactor horizontal and vertical planes) of the fluidized bed are obtained from the CPFD simulations at different operating conditions. The CPFD model was developed in a commercial CPFD software Barracuda Virtual Reactor 20.0.1. The bubble behavior and bed fluidization behavior are characterized form the bubble properties: average bubble diameter, bubble rise velocity, and bubble frequency. The bubble properties were determined by processing the extracted images with script developed in MATLAB. The CPFD simulation results are compared with experimental data (obtained from the ECT sensors) and correlations in the literature. The results from the CPFD model and experimental measurement depicted that the average bubble diameter increased with an increase in superficial gas velocities up to 4.2 Umf and decreased with a further increase in gas velocities due to the onset of large bubbles (potential slugging regime). The bubble rise velocity increased as it moved from the lower region to the bed surface. The Fourier transform of the transient solid volume fraction illustrated that multiple bubbles pass the plane with varying amplitude and frequency in the range of 1–6 Hz. Further, the bubble frequency increased with an increase in superficial gas velocity up to 2.5Umf and decreased with a further increase in gas velocity. The CPFD model and method employed in this work can be useful for studying the influence of bubble properties on conversion efficiency of a gasification reactor operating at high temperatures
    corecore