61 research outputs found
Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in co-infected human macrophages.
Human immunodeficiency virus (HIV) infection and Mycobacterium tuberculosis (TB) are responsible for two of the major global human infectious diseases that result in significant morbidity, mortality and socioeconomic impact. Furthermore, severity and disease prevention of both infections is enhanced by co-infection. Parallel limitations also exist in access to effective drug therapy and the emergence of resistance. Furthermore, drug-drug interactions have proven problematic during treatment of co-incident HIV and TB infections. Thus, improvements in drug access and simplified treatment regimens are needed immediately. One of the key host cells infected by both HIV and TB is the mononuclear phagocyte (MP; monocyte, macrophage and dendritic cell). Therefore, we hypothesized that one way this can be achieved is through drug-targeting by a nanoformulated drug that ideally would be active against both HIV and TB. Accordingly, we validated macrophage targeted long acting (sustained drug release) gallium (Ga) nanoformulation against HIV-mycobacterium co-infection. The multi-targeted Ga nanoparticle agent inhibited growth of both HIV and TB in the macrophage. The Ga nanoparticles reduced the growth of mycobacterium and HIV for up to 15 days following single drug loading. These results provide a potential new approach to treat HIV-TB co-infection that could eventually lead to improved clinical outcomes
Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages.
New treatments and novel drugs are required to counter the growing problem of drug-resistant strains of Mycobacterium tuberculosis (M.tb). Our approach against drug resistant M.tb, as well as other intracellular pathogens, is by targeted drug delivery using nanoformulations of drugs already in use, as well as drugs in development. Among the latter are gallium (III) (Ga)-based compounds. In the current work, six different types of Ga and rifampin nanoparticles were prepared in such a way as to enhance targeting of M.tb infected-macrophages. They were then tested for their ability to inhibit growth of a fully pathogenic strain (H37Rv) or a non-pathogenic strain (H37Ra) of M.tb. Encapsulating Ga in folate- or mannose-conjugated block copolymers provided sustained Ga release for 15 days and significantly inhibited M.tb growth in human monocyte-derived macrophages. Nanoformulations with dendrimers encapsulating Ga or rifampin also showed promising anti-tuberculous activity. The nanoparticles co-localized with M.tb containing phagosomes, as measured by detection of mature cathepsin D (34 kDa, lysosomal hydrogenase). They also promoted maturation of the phagosome, which would be expected to increase macrophage-mediated killing of the organism. Delivery of Ga or rifampin in the form of nanoparticles to macrophages offers a promising approach for the development of new therapeutic anti-tuberculous drugs
Effects of human serum on bacterial competition with neutrophils for molecular oxygen.
A dialyzable factor(s) in human serum is known to stimulate gonococcal oxygen consumption. Its effect on other human pathogens was investigated. A 10% serum solution increased peak O2 consumption for Escherichia coli and Staphylococcus aureus to 157% (P less than 0.05) and 199% (P less than 0.02), respectively, of their O2 consumption when suspended in Hanks balanced salt solution, compared with a 356% increase for Neisseria gonorrhoeae with serum. Dialyzed serum lacked stimulatory capacity. Bacteria, serum, and neutrophils are often incubated to evaluate neutrophil bactericidal activity. Samples of 10(8) N. gonorrhoeae, S. aureus, and E. coli turned resazurin colorless (anaerobic conditions, Eh less than -42 mV) after 7.4, 13.3, and 15.1 min, respectively. Because neutrophil formation of reactive oxygen intermediates requires ambient O2, the effect of live bacteria and serum on this process was explored. After 5 min of incubation of 10(8) N. gonorrhoeae or S. aureus in 10% normal or dialyzed serum, 10(5) neutrophils were added. Phorbol myristate acetate was then added to assure neutrophil stimulation, and luminol-dependent luminescence was measured. N. gonorrhoeae and S. aureus incubation in normal serum decreased peak LDL 91.7 and 88.6%, respectively, relative to incubation in dialyzed serum. A sample of 10(8) E. coli totally eliminated LDL. A sample of 10(8) E. coli incubated in Hanks balanced salt solution for 5 min also eliminated phorbol myristate acetate induced neutrophil H2O2 production. LDL inhibition increased in proportion to bacterial concentration and time of incubation and was prevented by inclusion of KCN. Increasing the concentration of neutrophils to 10(8) (1:1 particle-to-cell ratio) only partially reversed LDL inhibition. Re-aeration of the system allowed brief LDL which persisted only if KCN was added. Addition of KCN after bacterial incubation also permitted LDL, arguing against depletion of other factors from the media or accumulation of bacterially derived inhibitory substances. A dynamic competition for O2 occurs between bacteria and neutrophils. Serum stimulation of bacterial O2 utilization may contribute to virulence by increasing bacterial capacity to inhibit neutrophil function
Effects of human serum on the growth and metabolism of Neisseria gonorrhoeae: an alternative view of serum.
Humans are the sole reservoir of Neisseria gonorrhoeae, an organism which undergoes a marked increase in metabolic rate after exposure to a low-molecular-weight, heat-stable component(s) of human serum. Further studies on the effect of serum on gonococcal metabolism were undertaken. Gonococcal broth (GCB) is commonly used for in vitro cultivation of gonococci. Gonococci suspended in GCB plus 10% serum exhibited oxygen consumption rates of 139% (P less than 0.01) and 456% (P less than 0.01) of those suspended in GCB or Hanks balanced salt solution, respectively. A twofold increase in growth rate also resulted from the addition of 10% serum to GCB. Gonococcal 14C-labeled adenine incorporation increased threefold with 10% serum supplementation of Hanks balanced salt solution. Dialysis of serum in 1,000-molecular-weight exclusion tubing removed the stimulatory factor(s). Neither correction of anion-cation concentrations altered by dialysis nor addition of substances of known importance to the metabolism of gonococci (i.e., lactate, pyruvate, cysteine, ATP, AMP, NADPH, amino acids, malate, and glutathione) to dialyzed serum reconstituted stimulatory capacity. The effect of serum on gonococcal glucose-catabolic pathways was measured by modified radiospirometry. An apparent threefold increase in Entner-Doudoroff and pentose phosphate pathway activities was induced by 10% serum, as was the increased shunting of glucose-derived glyceraldehyde-3-phosphate into these pathways. These metabolic changes did not allow specific identification of the serum stimulatory factor(s). Acetate, the major by-product of gonococcal glucose catabolism, inhibited gonococcal oxygen consumption as previously reported. A high-molecular-weight serum component, probably albumin, reversed acetate-mediated inhibition of gonococcal oxygen consumption, identifying a second mechanism by which serum increases gonococcal metabolism. These results suggest that supplementation of growth media with serum should be considered to provide N. gonorrhoeae with conditions more consistent with its normal environment
Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes
Using the electron spin resonance/spin trapping system, 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN)/ethanol, hydroxyl radical was detected as the alpha-hydroxyethyl spin trapped adduct of 4-POBN, 4-POBN-CH(CH3)OH, from phorbol 12-myristate 13-acetate-stimulated human neutrophils and monocytes without the addition of supplemental iron. 4-POBN-CH(CH3)OH was stable in the presence of a neutrophil-derived superoxide flux. Hydroxyl radical formation was inhibited by treatment with superoxide dismutase, catalase, and azide. Treatment with a series of transition metal chelators did not appreciably alter 4-POBN-CH(CH3)OH, which suggested that hydroxyl radical generation was mediated by a mechanism independent of the transition metal-catalyzed Haber-Weiss reaction. Kinetic differences between transition metal-dependent and -independent mechanisms of hydroxyl radical generation by stimulated neutrophils were demonstrated by a greater rate of 4-POBN-CH(CH3)-OH accumulation in the presence of supplemental iron. Detection of hydroxyl radical from stimulated monocyte-derived macrophages, which lack myeloperoxidase, required the addition of supplemental iron. The addition of purified myeloperoxidase to an enzymatic superoxide generating system resulted in the detection of hydroxyl radical that was dependent upon the presence of chloride and was inhibited by superoxide dismutase, catalase, and azide. These findings implicated the reaction of hypochlorous acid and superoxide to produce hydroxyl radical. 4-POBN-CH(CH3)OH was not observed upon stimulation of myeloperoxidase-deficient neutrophils, whereas addition of myeloperoxidase to the reaction mixture resulted in the detection of hydroxyl radical. These results support the ability of human neutrophils and monocytes to generate hydroxyl radical through a myeloperoxidase-dependent mechanism
Energy is required for maximal adherence of Neisseria gonorrhoeae to phagocytic and nonphagocytic cells.
The possibility that gonococcal energy might play a role in the interaction of Neisseria gonorrhoeae with both
phagocytic and nonphagocytic cells was examined. Respiratory chain inhibitors including KCN and amobarbital
resulted in reduction in gonococcal association with human neutrophils. Similar results were seen with
HeLa cells and the human promyelocytic (HL-60) cell line. Identical conditions did not affect the opsonindependent
association of Staphylococcus aureus with the same cell types. New protein synthesis by gonococci did
not account for the observed reduction in association. These results suggest that energy is needed for maximal
opsonin-independent association of gonococci with mammalian cells
Mononuclear phagocytes have the potential for sustained hydroxyl radical production. Use of spin-trapping techniques to investigate mononuclear phagocyte free radical production
Monocytes lack lactoferrin and have much less myeloperoxidase than neutrophils. They also acquire a potential catalyst for .OH production (tartrate-resistant acid phosphatase) as they differentiate into macrophages. Consequently, the nature of free radicals produced by these cells was examined using the previously developed spin-trapping system. When stimulated with either PMA or OZ neither monocytes nor monocyte-derived macrophages (MDM) exhibited spin trap evidence of .OH formation. Pretreatment with IFN-gamma failed to induce MDM .OH production. When provided with an exogenous Fe+3 catalyst, both stimulated monocytes and MDM, but not PMN, exhibited sustained .OH production, presumably due to the absence of lactoferrin in mononuclear phagocytes. Sustained production of .OH could contribute to the microbicidal activity of mononuclear phagocytes as well as inflammatory tissue damage under in vivo conditions where catalytic Fe+3 may be present
- …