16 research outputs found

    Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? (vol 8 pg 94, 2011)

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.AbstractN/

    Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission?

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Immune dysfunction, including monocytosis and increased blood levels of interleukin-1, interleukin-6 and tumour necrosis factor α has been observed during acute episodes of major depression. These peripheral immune processes may be accompanied by microglial activation in subregions of the anterior cingulate cortex where depression-associated alterations of glutamatergic neurotransmission have been described. METHODS: Microglial immunoreactivity of the N-methyl-D-aspartate (NMDA) glutamate receptor agonist quinolinic acid (QUIN) in the subgenual anterior cingulate cortex (sACC), anterior midcingulate cortex (aMCC) and pregenual anterior cingulate cortex (pACC) of 12 acutely depressed suicidal patients (major depressive disorder/MDD, n = 7; bipolar disorder/BD, n = 5) was analyzed using immunohistochemistry and compared with its expression in 10 healthy control subjects. RESULTS: Depressed patients had a significantly increased density of QUIN-positive cells in the sACC (P = 0.003) and the aMCC (P = 0.015) compared to controls. In contrast, counts of QUIN-positive cells in the pACC did not differ between the groups (P = 0.558). Post-hoc tests showed that significant findings were attributed to MDD and were absent in BD. CONCLUSIONS: These results add a novel link to the immune hypothesis of depression by providing evidence for an upregulation of microglial QUIN in brain regions known to be responsive to infusion of NMDA antagonists such as ketamine. Further work in this area could lead to a greater understanding of the pathophysiology of depressive disorders and pave the way for novel NMDA receptor therapies or immune-modulating strategies.Peer Reviewe

    Evidence for a wide extra-astrocytic distribution of S100B in human brain

    Get PDF
    BACKGROUND: S100B is considered an astrocytic in-situ marker and protein levels in cerebrospinal fluid (CSF) or serum are often used as biomarker for astrocytic damage or dysfunction. However, studies on S100B in the human brain are rare. Thus, the distribution of S100B was studied by immunohistochemistry in adult human brains to evaluate its cell-type specificity. RESULTS: Contrary to glial fibrillary acidic protein (GFAP), which selectively labels astrocytes and shows only faint ependymal immunopositivity, a less uniform staining pattern was seen in the case of S100B. Cells with astrocytic morphology were primarily stained by S100B in the human cortex, while only 20% (14–30%) or 14% (7–35%) of all immunopositive cells showed oligodendrocytic morphology in the dorsolateral prefrontal and temporal cortices, respectively. In the white matter, however, most immunostained cells resembled oligodendrocytes [frontal: 75% (57–85%); temporal: 73% (59–87%); parietal: 79% (62–89%); corpus callosum: 93% (86–97%)]. S100B was also found in ependymal cells, the choroid plexus epithelium, vascular endothelial cells, lymphocytes, and several neurones. Anti-myelin basic protein (MBP) immunolabelling showed an association of S100B with myelinated fibres, whereas GFAP double staining revealed a distinct subpopulation of cells with astrocytic morphology, which solely expressed S100B but not GFAP. Some of these cells showed co-localization of S100B and A2B5 and may be characterized as O2A glial progenitor cells. However, S100B was not detected in microglial cells, as revealed by double-immunolabelling with HLA-DR. CONCLUSION: S100B is localized in many neural cell-types and is less astrocyte-specific than GFAP. These are important results in order to avoid misinterpretation in the identification of normal and pathological cell types in situ and in clinical studies since S100B is continuously used as an astrocytic marker in animal models and various human diseases

    The role of microglia in neuropsychiatric disorders and suicide

    Full text link
    This narrative review examines the possible role of microglial cells, first, in neuroinflammation and, second, in schizophrenia, depression, and suicide. Recent research on the interactions between microglia, astrocytes and neurons and their involvement in pathophysiological processes of neuropsychiatric disorders is presented. This review focuses on results from postmortem, positron emission tomography (PET) imaging studies, and animal models of schizophrenia and depression. Third, the effects of antipsychotic and antidepressant drug therapy, and of electroconvulsive therapy on microglial cells are explored and the upcoming development of therapeutic drugs targeting microglia is described. Finally, there is a discussion on the role of microglia in the evolutionary progression of human lineage. This view may contribute to a new understanding of neuropsychiatric disorders

    Reduced density of hypothalamic VGF-immunoreactive neurons in schizophrenia: a potential link to impaired growth factor signaling and energy homeostasis

    No full text
    Protein expression of VGF (nonacronymic) is induced by nerve/brain-derived growth factor, neurotrophin 3, and insulin. VGF is synthesized by neurons in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. After enzymatic processing, smaller VGF-derived peptides are secreted into the cerebrospinal fluid (CSF) or blood. These peptides play important roles by improving synaptic plasticity, neurogenesis, and energy homeostasis, which are impaired in schizophrenia. Based on previous observations of neuroendocrine and hypothalamic deficits in schizophrenia and to determine whether increased levels of the VGF fragment 23-62 in CSF, which have been described in a recent study, were related to changes in hypothalamic VGF expression, an immunohistochemical study was performed in 20 patients with schizophrenia and 19 matched control subjects. N- (D-20) and C-terminal (R-15) VGF antibodies yielded similar results and immunolabeled a vast majority of PVN and SON neurons. Additionally, D20-VGF immunohistochemistry revealed immunostained fibers in the pituitary stalk and neurohypophysis that ended at vessel walls, suggesting axonal transport and VGF secretion. The cell density of D20-VGF-immunoreactive neurons was reduced in the left PVN (P = 0.002) and SON (P = 0.008) of patients with schizophrenia. This study provides the first evidence for diminished hypothalamic VGF levels in schizophrenia, which might suggest increased protein secretion. Our finding was particularly significant in subjects without metabolic syndrome (patients with a body mass index ≤28.7 kg/m2). In conclusion, apart from beneficial effects on synaptic plasticity and neurogenesis, VGF may be linked to schizophrenia-related alterations in energy homeostasis
    corecore