1,679 research outputs found

    Scintillator counters with WLS fiber/MPPC readout for the side muon range detector (SMRD)of the T2K experiment

    Full text link
    The T2K neutrino experiment at J-PARC uses a set of near detectors to measure the properties of an unoscillated neutrino beam and neutrino interaction cross-sections. One of the sub-detectors of the near-detector complex, the side muon range detector (SMRD), is described in the paper. The detector is designed to help measure the neutrino energy spectrum, to identify background and to calibrate the other detectors. The active elements of the SMRD consist of 0.7 cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet yokes. The readout of each scintillator slab is provided through a single WLS fiber embedded into a serpentine shaped groove. Two Hamamatsu multi-pixel avalanche photodiodes (MPPC's) are coupled to both ends of the WLS fiber. This design allows us to achieve a high MIP detection efficiency of greater than 99%. A light yield of 25-50 p.e./MIP, a time resolution of about 1 ns and a spatial resolution along the slab better than 10 cm were obtained for the SMRD counters.Comment: 7 pages, 4 figures; talk at TIPP09, March 12-17, Tsukuba, Japan; to be published in the conference proceeding

    The T2K Side Muon Range Detector

    Full text link
    The T2K experiment is a long baseline neutrino oscillation experiment aiming to observe the appearance of {\nu} e in a {\nu}{\mu} beam. The {\nu}{\mu} beam is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed with the 295 km distant Super- Kamiokande Detector and monitored by a suite of near detectors at 280m from the proton target. The near detectors include a magnetized off-axis detector (ND280) which measures the un-oscillated neutrino flux and neutrino cross sections. The present paper describes the outermost component of ND280 which is a side muon range detector (SMRD) composed of scintillation counters with embedded wavelength shifting fibers and Multi-Pixel Photon Counter read-out. The components, performance and response of the SMRD are presented.Comment: 13 pages, 19 figures v2: fixed several typos; fixed reference

    The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries

    Full text link
    Observations indicate that nearly all galaxies contain supermassive black holes (SMBHs) at their centers. When galaxies merge, their component black holes form SMBH binaries (SMBHBs), which emit low-frequency gravitational waves (GWs) that can be detected by pulsar timing arrays (PTAs). We have searched the recently-released North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11-year data set for GWs from individual SMBHBs in circular orbits. As we did not find strong evidence for GWs in our data, we placed 95\% upper limits on the strength of GWs from such sources as a function of GW frequency and sky location. We placed a sky-averaged upper limit on the GW strain of h0<7.3(3)×1015h_0 < 7.3(3) \times 10^{-15} at fgw=8f_\mathrm{gw}= 8 nHz. We also developed a technique to determine the significance of a particular signal in each pulsar using ``dropout' parameters as a way of identifying spurious signals in measurements from individual pulsars. We used our upper limits on the GW strain to place lower limits on the distances to individual SMBHBs. At the most-sensitive sky location, we ruled out SMBHBs emitting GWs with fgw=8f_\mathrm{gw}= 8 nHz within 120 Mpc for M=109M\mathcal{M} = 10^9 \, M_\odot, and within 5.5 Gpc for M=1010M\mathcal{M} = 10^{10} \, M_\odot. We also determined that there are no SMBHBs with M>1.6×109M\mathcal{M} > 1.6 \times 10^9 \, M_\odot emitting GWs in the Virgo Cluster. Finally, we estimated the number of potentially detectable sources given our current strain upper limits based on galaxies in Two Micron All-Sky Survey (2MASS) and merger rates from the Illustris cosmological simulation project. Only 34 out of 75,000 realizations of the local Universe contained a detectable source, from which we concluded it was unsurprising that we did not detect any individual sources given our current sensitivity to GWs.Comment: 10 pages, 11 figures. Accepted by Astrophysical Journal. Please send any comments/questions to S. J. Vigeland ([email protected]

    Can we continue research in splenectomized dogs? Mycoplasma haemocanis: Old problem - New insight

    Get PDF
    We report the appearance of a Mycoplasma haemocanis infection in laboratory dogs, which has been reported previously, yet, never before in Europe. Outbreak of the disease was triggered by a splenectomy intended to prepare the dogs for a hemorrhagic shock study. The clinical course of the dogs was dramatic including anorexia and hemolytic anemia. Treatment included allogeneic transfusion, prednisone, and oxytetracycline. Systematic follow-up (n=12, blood smears, antibody testing and specific polymerase chain reaction) gives clear evidence that persistent eradication of M. haemocanis is unlikely. We, therefore, had to abandon the intended shock study. In the absence of effective surveillance and screening for M. haemocanis, the question arises whether it is prudent to continue shock research in splenectomized dogs. Copyright (C) 2004 S. Karger AG, Basel

    Scintillator counters with WLS fiber/MPPC readout for the side muon range detector (SMRD) of the T2K experiment

    Get PDF
    The T2K neutrino experiment at J-PARC uses a set of near detectors to measure the properties of an unoscillated neutrino beam and neutrino interaction cross-sections. One of the sub-detectors of the near-detector complex, the side muon range detector (SMRD), is described in the paper. The detector is designed to help measure the neutrino energy spectrum, to identify background and to calibrate the other detectors. The active elements of the SMRD consist of 0.7 cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet yokes. The readout of each scintillator slab is provided through a single WLS fiber embedded into a serpentine-shaped groove. Two Hamamatsu multipixel avalanche photodiodes (MPPC\u27s) are coupled to both ends of the WLS fiber. This design allows us to achieve a high MIP detection efficiency of greater than 99%. A light yield of 2550 p.e./MIP, a time resolution of about 1 ns and a spatial resolution along the slab better than 10 cm were obtained for the SMRD counters. © 2010 Elsevier B.V. All rights reserved

    The SMRD subdetector at the T2K near detector station

    Get PDF
    The T2K long-baseline neutrino oscillation experiment is running in Japan. The primary goals of the T2K are measurement of the mixing angle 13, and precise measurements of the mixing angle 23 and of the mass difference m2 23. The installation of the near detector complex was completed and first data were already registered. This article presents operation of the Side Muon Range Detector, a component of the Off-Axis near detector. Detector concept and implementation are presented, followed by a description of cosmic muon track reconstruction algorithm and finally current status
    corecore