5 research outputs found

    Influence of Speed, Ground Surface and Shoeing Condition on Hoof Breakover Duration in Galloping Thoroughbred Racehorses

    Get PDF
    Understanding the effect of horseshoe–surface combinations on hoof kinematics at gallop is relevant for optimising performance and minimising injury in racehorse–jockey dyads. This intervention study assessed hoof breakover duration in Thoroughbred ex-racehorses from the British Racing School galloping on turf and artificial tracks in four shoeing conditions: aluminium, barefoot, aluminium–rubber composite (GluShu) and steel. Shoe–surface combinations were tested in a randomized order and horse–jockey pairings (n = 14) remained constant. High-speed video cameras (Sony DSC-RX100M5) filmed the hoof-ground interactions at 1000 frames per second. The time taken for a hoof marker wand fixed to the lateral hoof wall to rotate through an angle of 90 degrees during 384 breakover events was quantified using Tracker software. Data were collected for leading and non-leading forelimbs and hindlimbs, at gallop speeds ranging from 23–56 km h−1. Linear mixed-models assessed whether speed, surface, shoeing condition and any interaction between these parameters (fixed factors) significantly affected breakover duration. Day and horse–jockey pair were included as random factors and speed was included as a covariate. The significance threshold was set at p \u3c 0.05. For all limbs, breakover times decreased as gallop speed increased (p \u3c 0.0005), although a greater relative reduction in breakover duration for hindlimbs was apparent beyond approximately 45 km h−1. Breakover duration was longer on turf compared to the artificial surface (p ≤ 0.04). In the non-leading hindlimb only, breakover duration was affected by shoeing condition (p = 0.025) and an interaction between shoeing condition and speed (p = 0.023). This work demonstrates that speed, ground surface and shoeing condition are important factors influencing the galloping gait of the Thoroughbred racehorse

    Hoof Impact and Foot-Off Accelerations in Galloping Thoroughbred Racehorses Trialling Eight Shoe–Surface Combinations

    No full text
    The athletic performance and safety of racehorses is influenced by hoof–surface interactions. This intervention study assessed the effect of eight horseshoe–surface combinations on hoof acceleration patterns at impact and foot-off in 13 galloping Thoroughbred racehorses retired from racing. Aluminium, barefoot, GluShu (aluminium–rubber composite) and steel shoeing conditions were trialled on turf and artificial (Martin Collins Activ-Track) surfaces. Shod conditions were applied across all four hooves. Tri-axial accelerometers (SlamStickX, range ±500 g, sampling rate 5000 Hz) were attached to the dorsal hoof wall (x: medio-lateral, medial = positive; y: along dorsal hoof wall, proximal = positive; and z: perpendicular to hoof wall, dorsal = positive). Linear mixed models assessed whether surface, shoeing condition or stride time influenced maximum (most positive) or minimum (most negative) accelerations in x, y and z directions, using ≥40,691 strides (significance at p p ≤ 0.015), with the exception of the forelimb z-minimum, and in absolute terms, maximum values were typically double the minimum values. The surface type affected all foot-off accelerations (p ≤ 0.022), with the exception of the hindlimb x-maximum; for example, there was an average increase of 17% in z-maximum across limbs on the artificial track. The shoeing condition influenced all impact and foot-off accelerations in the forelimb and hindlimb datasets (p ≤ 0.024), with the exception of the hindlimb impact y-maximum. Barefoot hooves generally experienced the lowest accelerations. The stride time affected all impact and foot-off accelerations (p < 0.001). Identifying factors influencing hoof vibrations upon landing and hoof motion during propulsion bears implication for injury risk and racing outcomes
    corecore