1,807 research outputs found
Photoemission spectra of LaMnO3 controlled by orbital excitations
We investigate the spectral function of a hole moving in the orbital-ordered
ferromagnetic planes of LaMnO, and show that it depends critically on the
type of orbital ordering. While the hole does not couple to the spin
excitations, it interacts strongly with the excitations of orbitals
(orbitons), leading to new type of quasiparticles with a dispersion on the
orbiton energy scale and with strongly enhanced mass and reduced weight.
Therefore we predict a large redistribution of spectral weight with respect to
the bands found in local density approximation (LDA) or in LDA+U.Comment: 4 pages, 4 figures, 3 figures embedded, figure 3 correcte
Orbital excitations in LaMnO
We study the recently observed orbital excitations, orbitons, and treat
electron-electron correlations and lattice dynamics on equal footing. It is
shown that the orbiton energy and dispersion are determined by both
correlations and lattice-vibrations. The electron-phonon coupling causes
satellite structures in the orbiton spectral function and the elementary
excitations of the system are mixed modes with both orbital and phonon
character. It is proposed that the satellite structures observed in recent
Raman-scattering experiments on LaMnO are actually orbiton derived
satellites in the phonon spectral function, caused by the phonon-orbiton
interaction.Comment: 4 pages, 3 figures embedde
Reentrant metallic transition at a temperature above Tc at the breakdown of cooperative Jahn-Teller orbital order in perovskite manganites
We report an interesting reentrant metallic resistivity pattern beyond a
characteristic temperature T* which is higher than other such characteristic
transition temperatures like T(c)(Curie point), T(N) (Neel point), T(CO)
(charge order onset point) or T(OO) (orbital order onset point) in a range of
rare-erath perovskite manganites (RE(1-x)A(x)MnO(3); RE = La, Nd, Y; A = Sr,
Ca; x = 0.0-0.5). Such a behavior is normally observed in doped manganites with
doping level (x) higher than the critical doping level x(c) (= 0.17-0.22)
required for the metallic ground state to emerge and hence in a system where
cooperative Jahn-Teller orbital order has already undergone a breakdown.
However, the observation made in the La(1-x)Ca(x)MnO(3) (x = 0.0-0.5) series
turns out to be an exception to this general trend.Comment: 15 pages including 3 figures; pdf onl
Charge and orbital order in half-doped manganites
An explanation is given for the charge order, orbital order and insulating
state observed in half-doped manganese oxides, such as
NdSrMnO. The competition between the kinetic energy of
the electrons and the magnetic exchange energy drives the formation of
effectively one-dimensional ferromagnetic zig-zag chains. Due to a topological
phase factor in the hopping, the chains are intrinsically insulating and
orbital-ordered. Most surprisingly, the strong Coulomb interaction between
electrons on the same Mn-ion leads to the experimentally observed charge
ordering. For doping less than 1/2 the system is unstable towards phase
separation into a ferromagnetic metallic and charge-ordered insulating phase.Comment: To appear in Phys. Rev. Lett., 4 pages, 4 figure
Occupation probability of harmonic-oscillator quanta for microscopic cluster-model wave functions
We present a new and simple method of calculating the occupation probability
of the number of total harmonic-oscillator quanta for a microscopic
cluster-model wave function. Examples of applications are given to the recent
calculations including -model for He, -model for
Li, and -model for Be as well as the classical
calculations of -model for Li and -model
for C. The analysis is found to be useful for quantifying the amount of
excitations across the major shell as well as the degree of clustering. The
origin of the antistretching effect is discussed.Comment: 9 page
Resonant X-ray Study on the Bi-Layered Perovskite Mn Oxide LaSr2Mn2O7
Charge and orbital ordering behaviors in the half doped bi-layered compound
LaSr2Mn2O7 have been studied by resonant and non-resonant X-ray scattering.
Three different order parameters, which correspond to the A-type
antiferromagnetic, a charge and an orbital ordered states, were observed by
measuring the magnetostriction and the superlattice peaks characterized by
wavevectors (1/2 1/2 0) and (1/4 1/4 0), respectively. The superlattice
reflections indicating the charge and orbital ordered states were observed
below 210 K. Both the intensities reach a maximum at 160 K on cooling and
become very weak below 100 K. The peak width of the charge ordered state agrees
with that of the orbital ordered state at all temperatures studied. These
results indicate that both the states originate from a single phase and that
the charge/orbital ordered islands with definite interfaces disperse in the
A-type antiferromagnetic phase. The dimensionality of the charge/orbital
ordered phase is discussed using this model.Comment: 9pages, 10 figure
Bremsstrahlung in Decay
A quantum mechanical analysis of the bremsstrahlung in decay of
Po is performed in close reference to a semiclassical theory. We
clarify the contribution from the tunneling, mixed, outside barrier regions and
from the wall of the inner potential well to the final spectral distribution,
and discuss their interplay. We also comment on the validity of semiclassical
calculations, and the possibility to eliminate the ambiguity in the nuclear
potential between the alpha particle and daughter nucleus using the
bremsstrahlung spectrum.Comment: 6 pages, 3 figures, submitted to PR
Orbital dynamics in ferromagnetic transition metal oxides
We consider a model of strongly correlated electrons interacting by
superexchange orbital interactions in the ferromagnetic phase of LaMnO. It
is found that the classical orbital order with alternating occupied
orbitals has a full rotational symmetry at orbital degeneracy, and the
excitation spectrum derived using the linear spin-wave theory is gapless. The
quantum (fluctuation) corrections to the order parameter and to the ground
state energy restore the cubic symmetry of the model. By applying a uniaxial
pressure orbital degeneracy is lifted in a tetragonal field and one finds an
orbital-flop phase with a gap in the excitation spectrum. In two dimensions the
classical order is more robust near the orbital degeneracy point and quantum
effects are suppressed. The orbital excitation spectra obtained using finite
temperature diagonalization of two-dimensional clusters consist of a
quasiparticle accompanied by satellite structures. The orbital waves found
within the linear spin-wave theory provide an excellent description of the
dominant pole of these spectra.Comment: 13 pages, 12 figures, to appear in Phys. Rev.
The Balanced Threat Agreement for Individual Externality Negotiation Problems
This paper introduces a model to analyze individual externalities and the associated negotiation problem, which has been largely neglected in the game theoretic literature. Following an axiomatic perspective, we propose a solution, as a payoff sharing scheme, called the balanced threat agreement, for such problems. It highlights an agent’s potential influences on all agents by threatening to enter or quit. We further study the solution by investigating its consistency. We also offer a discussion on the related stability issue
Independent freezing of charge and spin dynamics in La1.5Sr0.5CoO4
We present elastic and quasielastic neutron scattering measurements
characterizing peculiar short-range charge-orbital and spin order in the
layered perovskite material La1.5Sr0.5CoO4. We find that below Tc~750 K holes
introduced by Sr doping lose mobility and enter a statically ordered {\it
charge glass} phase with loosely correlated checkerboard arrangement of empty
and occupied d{3z2-r2} orbitals (Co3+ and Co2+). The dynamics of the resultant
mixed spin system is governed by the anisotropic nature of the crystal-field
Hamiltonian and the peculiar exchange pattern produced by the orbital order. It
undergoes a {\it spin freezing} transition at much a lower temperature, Ts~30
K.Comment: 4 pages, 3 figures, Latex. Submitted to PR
- …