267 research outputs found
Relativistic bound states in Yukawa model
The bound state solutions of two fermions interacting by a scalar exchange
are obtained in the framework of the explicitly covariant light-front dynamics.
The stability with respect to cutoff of the J= and J=
states is studied. The solutions for J= are found to be stable for
coupling constants below the critical value
and unstable above it. The asymptotic behavior of the
wave functions is found to follow a law. The coefficient
and the critical coupling constant are calculated from an
eigenvalue equation. The binding energies for the J= solutions
diverge logarithmically with the cutoff for any value of the coupling constant.
For a wide range of cutoff, the states with different angular momentum
projections are weakly split.Comment: 22 pages, 13 figures, .tar.gz fil
Two-fermion relativistic bound states in Light-Front Dynamics
In the Light-Front Dynamics, the wave function equations and their numerical
solutions, for two fermion bound systems, are presented. Analytical expressions
for the ladder one-boson exchange interaction kernels corresponding to scalar,
pseudoscalar, pseudovector and vector exchanges are given. Different couplings
are analyzed separately and each of them is found to exhibit special features.
The results are compared with the non relativistic solutions.Comment: 40 pages, to be published in Phys. Rev. C, .tar.gz fil
A first look at maximally twisted mass lattice QCD calculations at the physical point
In this contribution, a first look at simulations using maximally twisted
mass Wilson fermions at the physical point is presented. A lattice action
including clover and twisted mass terms is presented and the Monte Carlo
histories of one run with two mass-degenerate flavours at a single lattice
spacing are shown. Measurements from the light and heavy-light pseudoscalar
sectors are compared to previous results and their phenomenological
values. Finally, the strategy for extending simulations to is
outlined.Comment: presented at the 31st International Symposium on Lattice Field Theory
(Lattice 2013), 29 July - 3 August 2013, Mainz, German
Sources of quantum waves
Due to the space and time dependence of the wave function in the time
dependent Schroedinger equation, different boundary conditions are possible.
The equation is usually solved as an ``initial value problem'', by fixing the
value of the wave function in all space at a given instant. We compare this
standard approach to "source boundary conditions'' that fix the wave at all
times in a given region, in particular at a point in one dimension. In contrast
to the well-known physical interpretation of the initial-value-problem
approach, the interpretation of the source approach has remained unclear, since
it introduces negative energy components, even for ``free motion'', and a
time-dependent norm. This work provides physical meaning to the source method
by finding the link with equivalent initial value problems.Comment: 12 pages, 7 inlined figures; typos correcte
Large-momentum convergence of Hamiltonian bound-state dynamics of effective fermions in quantum field theory
Contributions to the bound-state dynamics of fermions in local quantum field
theory from the region of large relative momenta of the constituent particles,
are studied and compared in two different approaches. The first approach is
conventionally developed in terms of bare fermions, a Tamm-Dancoff truncation
on the particle number, and a momentum-space cutoff that requires counterterms
in the Fock-space Hamiltonian. The second approach to the same theory deals
with bound states of effective fermions, the latter being derived from a
suitable renormalization group procedure. An example of two-fermion bound
states in Yukawa theory, quantized in the light-front form of dynamics, is
discussed in detail. The large-momentum region leads to a buildup of
overlapping divergences in the bare Tamm-Dancoff approach, while the effective
two-fermion dynamics is little influenced by the large-momentum region. This is
illustrated by numerical estimates of the large-momentum contributions for
coupling constants on the order of between 0.01 and 1, which is relevant for
quarks.Comment: 22 pages, 9 figure
The Nuclear Yukawa Model on a Lattice
We present the results of the quantum field theory approach to nuclear Yukawa
model obtained by standard lattice techniques. We have considered the simplest
case of two identical fermions interacting via a scalar meson exchange.
Calculations have been performed using Wilson fermions in the quenched
approximation. We found the existence of a critical coupling constant above
which the model cannot be numerically solved. The range of the accessible
coupling constants is below the threshold value for producing two-body bound
states. Two-body scattering lengths have been obtained and compared to the non
relativistic results.Comment: 15 page
The AMS-RICH velocity and charge reconstruction
The AMS detector, to be installed on the International Space Station,
includes a Ring Imaging Cerenkov detector with two different radiators, silica
aerogel (n=1.05) and sodium fluoride (n=1.334). This detector is designed to
provide very precise measurements of velocity and electric charge in a wide
range of cosmic nuclei energies and atomic numbers. The detector geometry, in
particular the presence of a reflector for acceptance purposes, leads to
complex Cerenkov patterns detected in a pixelized photomultiplier matrix. The
results of different reconstruction methods applied to test beam data as well
as to simulated samples are presented. To ensure nominal performances
throughout the flight, several detector parameters have to be carefully
monitored. The algorithms developed to fulfill these requirements are
presented. The velocity and charge measurements provided by the RICH detector
endow the AMS spectrometer with precise particle identification capabilities in
a wide energy range. The expected performances on light isotope separation are
discussed.Comment: Contribution to the ICRC07, Merida, Mexico (2007); Presenter: F.
Bara
Study of relativistic bound states for scalar theories in Bethe-Salpeter and Dyson-Schwinger formalism
The Bethe-Salpeter equation for Wick-Cutkosky like models is solved in
dressed ladder approximation. The bare vertex truncation of the Dyson-Schwinger
equations for propagators is combined with the dressed ladder Bethe-Salpeter
equation for the scalar S-wave bound state amplitudes. With the help of
spectral representation the results are obtained directly in Minkowski space.
We give a new analytic formula for the resulting equation simplifying the
numerical treatment. The bare ladder approximation of Bethe-Salpeter equation
is compared with the one with dressed ladder. The elastic electromagnetic form
factors is calculated within the relativistic impulse approximation.Comment: 30 pages, 10 figures, accepted for publication in Phys. Rev.
The Ring Imaging Cherenkov detector (RICH) of the AMS experiment
The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the
International Space Station (ISS) will be equipped with a proximity focusing
Ring Imaging Cherenkov (RICH) detector for measuring the electric charge and
velocity of the charged cosmic particles. A RICH prototype consisting of 96
photomultiplier units, including a piece of the conical reflector, was built
and its performance evaluated with ion beam data. Preliminary results of the
in-beam tests performed with ion fragments resulting from collisions of a 158
GeV/c/nuc primary beam of Indium ions (CERN SPS) on a Pb target are reported.
The collected data included tests to the final front-end electronics and to
different aerogel radiators. Cherenkov rings for a large range of charged
nuclei and with reflected photons were observed. The data analysis confirms the
design goals. Charge separation up to Fe and velocity resolution of the order
of 0.1% for singly charged particles are obtained.Comment: 29th International Conference on Cosmic Rays (Pune, India
Two-Fermion Bound States within the Bethe-Salpeter Approach
To solve the spinor-spinor Bethe-Salpeter equation in Euclidean space we
propose a novel method related to the use of hyperspherical harmonics. We
suggest an appropriate extension to form a new basis of spin-angular harmonics
that is suitable for a representation of the vertex functions. We present a
numerical algorithm to solve the Bethe-Salpeter equation and investigate in
detail the properties of the solution for the scalar, pseudoscalar and vector
meson exchange kernels including the stability of bound states. We also compare
our results to the non relativistic ones and to the results given by light
front dynamics.Comment: 32 pages, XIII Tables, 8 figure
- …
