389 research outputs found

    The Optical Polarization and Warm Absorber in IRAS 17020+4544

    Get PDF
    We report the detection of ionized absorption in the ASCA spectrum of the narrow-line Seyfert 1 galaxy IRAS 17020+4544. Subsequent optical spectropolarimetry revealed high polarization increasing from 3% in the red to 5% in the blue, indicating electron or dust scattering as a likely origin. The broad emission line Hα\alpha is somewhat less polarized than the continuum, supporting a location of the polarizing material within the AGN. The Balmer line decrement and reddened optical spectrum support the presence of a dusty warm absorber in this object. We compared the broad band optical polarization and ionized X-ray absorption of a collection of Seyfert 1 and 1.5 galaxies, excluding classes of objects that are likely to have significant neutral X-ray absorption. Warm absorber objects are generally more likely to have high optical polarization than objects with no detected ionized absorption. This result lends additional support to the idea that the warm absorber is associated with dust and implies either that dust transmission is responsible for at least part of the polarization or that the polarization is revealed because of the dimming of the optical spectrum. Spectropolarimetry of Seyfert 1s generally locates the scattering material inside the narrow-line region and often close to or within the broad line region, consistent with estimates of the location of the dusty warm absorber.Comment: 11 pages using (AASTeX) aaspp4.sty and 3 Postscript figures. Accepted for publication in Astrophysical Journal Letter

    Is it Round? Spectropolarimetry of the Type II-P Supernova 1999em

    Full text link
    We present the first multi-epoch spectropolarimetry of a type II plateau supernova (SN II-P), with optical observations of SN 1999em on days 7, 40, 49, 159, and 163 after discovery. These data are used to probe the geometry of the electron-scattering atmosphere before, during, and after the plateau phase, which ended roughly 90 days after discovery. Weak continuum polarization with an unchanging polarization angle (theta ~ 160 deg) is detected at all epochs, with p ~ 0.2% on day 7, p ~ 0.3% on days 40 and 49, and p ~ 0.5% in the final observations. Distinct polarization modulations across strong line features are present on days 40, 49, 159, and 163. Uncorrected for interstellar polarization (which is believed to be quite small), polarization peaks are associated with strong P Cygni absorption troughs and nearly complete depolarization is seen across the H-alpha emission profile. The temporal evolution of the continuum polarization and sharp changes across lines indicate polarization intrinsic to SN 1999em. When modeled in terms of the oblate, electron-scattering atmospheres of Hoeflich, the observed polarization implies anasphericity of at least 7% during the period studied. The temporal polarization increase may indicate greater asphericity deeper into the ejecta. We discuss the implications of asphericity on the use of type II-P supernovae as primary extragalactic distance indicators through the expanding photosphere method (EPM). If asphericity produces directionally dependant flux and peculiar galaxy motions are characterized by sigma_v_rec = 300 km/s, it is shown that the agreement between previous EPM measurements of SNe II and distances to the host galaxies predicted by a linear Hubble law restrict mean SN II asphericity to values less than 30% (3-sigma) during the photospheric phase.Comment: 65 pages (29 Figures, 4 Tables), Accepted for publication in the June 1, 2001 edition of ApJ. Revised statistical analysis of scatter in Hubble diagram of previous EPM distances and the implications for mean SN II asphericit

    UV Spectropolarimetry of Narrow-line Radio Galaxies

    Get PDF
    We present the results of UV spectropolarimetry (2000 - 3000A) and far-UV spectroscopy (1500 - 2000A) of two low-redshift narrow-line radio galaxies (NLRGs) taken with the Faint Object Spectrograph onboard the Hubble Space Telescope (HST). Spectropolarimetry of several NLRGs has shown that, by the presence of broad permitted lines in polarized flux spectrum, they have hidden quasars seen through scattered light. Imaging polarimetry has shown that NLRGs including our targets often have large scattering regions of a few kpc to >~10 kpc scale. This has posed a problem about the nature of the scatterers in these radio galaxies. Their polarized continuum has the spectral index similar to or no bluer than that of quasars, which favors electrons as the dominant scattering particles. The large scattering region size, however, favors dust scattering, because of its higher scattering efficiency compared to electrons. In this paper, we investigate the polarized flux spectrum over a wide wavelength range, combining our UV data with previous optical/infrared polarimetry data. We infer that the scattering would be often caused by opaque dust clouds in the NLRGs and this would be a part of the reason for the apparently grey scattering. In the high-redshift radio galaxies, these opaque clouds could be the proto-galactic subunits inferred to be seen in the HST images. However, we still cannot rule out the possibility of electron scattering, which could imply the existence of a large gas mass surrounding these radio galaxies.Comment: 25 pages, 21 figures. To appear in Ap

    Polarimetry and Unification of Low-Redshift Radio Galaxies

    Full text link
    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRG) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRG show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRG. Classification as NLRG, broad-line radio galaxy (BLRG), or quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased towards objects known in advance to be polarized, but the combination of our results with those of Hill, Goodrich and DePoy (1996) show that at least 6 out of a complete, volume and flux-limited sample of 9 FR II NLRG have broad lines, seen either in polarization or P_alpha.Comment: To appear in November 1999 Astronomical Journal. 49 pages, 13 figure

    Enormous disc of cool gas surrounding the nearby powerful radio galaxy NGC 612 (PKS 0131-36)

    Get PDF
    We present the detection of an enormous disc of cool neutral hydrogen (HI) gas surrounding the S0 galaxy NGC 612, which hosts one of the nearest powerful radio sources (PKS 0131-36). Using the Australia Telescope Compact Array, we detect M_HI = 1.8 x 10^9 M_sun of HI emission-line gas that is distributed in a 140 kpc wide disc-like structure along the optical disc and dust-lane of NGC 612. The bulk of the gas in the disc appears to be settled in regular rotation with a total velocity range of 850 km/s, although asymmetries in this disc indicate that perturbations are being exerted on part of the gas, possibly by a number of nearby companions. The HI disc in NGC 612 suggests that the total mass enclosed by the system is M_enc ~ 2.9 x 10^12 sin^-2(i) M_sun, implying that this early-type galaxy contains a massive dark matter halo. We also discuss an earlier study by Holt et al. that revealed the presence of a prominent young stellar population at various locations throughout the disc of NGC 612, indicating that this is a rare example of an extended radio source that is hosted by a galaxy with a large-scale star-forming disc. In addition, we map a faint HI bridge along a distance of 400 kpc in between NGC 612 and the gas-rich (M_HI = 8.9 x 10^9 M_sun) barred galaxy NGC 619, indicating that likely an interaction between both systems occurred. From the unusual amounts of HI gas and young stars in this early-type galaxy, in combination with the detection of a faint optical shell and the system's high infra-red luminosity, we argue that either ongoing or past galaxy interactions or a major merger event are a likely mechanism for the triggering of the radio source in NGC 612. This paper is part of an ongoing study to map the large-scale neutral hydrogen properties of nearby radio galaxies. --abridged--Comment: 13 pages, 9 figures. MNRAS in press. See http://www.blackwell-synergy.com/doi/full/10.1111/j.1365-2966.2008.13142.x for a full resolution versio

    Mutiwavelength Observations of Radio Galaxy 3C 120 with XMM-Newton

    Full text link
    We present XMM-Newton observations of the radio galaxy 3C 120. The hard X-ray spectrum contains a marginally resolved Fe I K-alpha emission line with FWHM=9,000 km/s and an equivalent width of 57 eV. The line arises via fluorescence in a broad-line region with covering fraction of 0.4. There is no evidence of relativistically broad Fe K-alpha, contrary to some previous reports. The normal equivalent widths of the X-ray and optical emission lines exclude a strongly beamed synchrotron component to the hard X-ray and optical continua. There is an excess of 0.3-2 keV soft X-ray continuum over an extrapolation of the hard X-ray power-law, which may arise in a disk corona. Analysis of an archival Chandra image shows that extended emission from the jet and other sources contributes <3% of the total X-ray flux. A break in the X-ray spectrum below 0.6 keV indicates an excess neutral hydrogen column density of N_H=1.57 * 10^21 cm^{-2}. However, the neutral absorber must have an oxygen abundance of <1/50 of the solar value to explain the absence of an intrinsic or intervening O I edge. There is no ionized absorption in the soft X-ray spectrum, but there is a weak, narrow O VIII Ly-alpha emission line. We do not detect previously claimed O VIII absorption from the intervening intergalactic medium. Radio observations at 37 GHz show a fast, high frequency flare starting 8 days after the XMM-Newton observation. However, this has no obvious effect on the X-ray spectrum. The X-ray spectrum, including the soft excess, became harder as the X-ray flux decreased, with an estimated pivot energy of 40 keV. The UV and soft X-ray fluxes are strongly correlated over the 120 ks duration of the XMM-Newton observation. This is qualitatively consistent with Comptonization of UV photons by a hot corona. (Abridged)Comment: 23 pages, 13 figures, Submitted to the Astrophysical Journal April 200

    The XMM-Newton serendipitous ultraviolet source survey catalogue

    Get PDF
    The XMM-Newton Serendipitous Ultraviolet Source Survey (XMM-SUSS) is a catalogue of ultraviolet (UV) sources detected serendipitously by the Optical Monitor (XMM-OM) on-board the XMM-Newton observatory. The catalogue contains ultraviolet-detected sources collected from 2,417 XMM-OM observations in 1-6 broad band UV and optical filters, made between 24 February 2000 and 29 March 2007. The primary contents of the catalogue are source positions, magnitudes and fluxes in 1 to 6 passbands, and these are accompanied by profile diagnostics and variability statistics. The XMM-SUSS is populated by 753,578 UV source detections above a 3 sigma signal-to-noise threshold limit which relate to 624,049 unique objects. Taking account of substantial overlaps between observations, the net sky area covered is 29-54 square degrees, depending on UV filter. The magnitude distributions peak at 20.2, 20.9 and 21.2 in UVW2, UVM2 and UVW1 respectively. More than 10 per cent of sources have been visited more than once using the same filter during XMM-Newton operation, and > 20 per cent of sources are observed more than once per filter during an individual visit. Consequently, the scope for science based on temporal source variability on timescales of hours to years is broad. By comparison with other astrophysical catalogues we test the accuracy of the source measurements and define the nature of the serendipitous UV XMM-OM source sample. The distributions of source colours in the UV and optical filters are shown together with the expected loci of stars and galaxies, and indicate that sources which are detected in multiple UV bands are predominantly star-forming galaxies and stars of type G or earlier.Comment: Accepted for publication in MNRA
    • …
    corecore