50 research outputs found

    Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors

    Get PDF
    Matrix metalloproteinase (MMP)-1, MMP-8 and MMP-13 are interstitial collagenases that degrade type II collagen in cartilage; this is a committed step in the progression of rheumatoid arthritis and osteoarthritis. Of these enzymes, the expression of MMP-1 and MMP-13 is substantially increased in response to IL-1 and tumor necrosis factor-α, and elevated levels of these collagenases are observed in arthritic tissues. Therefore, cytokine-mediated MMP-1 and MMP-13 gene regulation is an important issue in arthritis research. In this review, we discuss current models of MMP-1 and MMP-13 transcriptional regulation, with a focus on signaling intermediates and transcription factors that may be future targets for the development of new arthritis drugs

    Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase

    Get PDF
    BACKGROUND: Metastatic renal cell carcinoma (RCC) remains the leading cause of mortality in patients with clear cell RCC arising from mutations in the von Hippel Lindau (VHL) tumor suppressor. Successful RCC tumor suppression by VHL requires the negative regulation of hypoxia inducible factor alpha (HIF alpha) protein and its downstream targets. Thus, identification of HIF target genes responsible for RCC tumor progression will aid in the development of therapies for this disease. We previously identified membrane type-1 matrix metalloproteinase (MT1-MMP) as a transcriptional target of HIF-2alpha in RCC cells null for VHL and showed that MT1-MMP is overexpressed in these cells. MT1-MMP is a key regulator of tumor progression through its functions as a matrix-degrading enzyme, as well as its ability to cleave factors, such as adhesion molecules and other MMPs. The aim of this study was to investigate the contribution of MT1-MMP to the invasive potential of RCC cells using in vitro type I collagen degradation and invasion assays. RESULTS: We evaluated RCC cells wild-type (WT8) and null (pRc-9) for VHL for invasive characteristics and showed that the pRc-9 cells demonstrated a greater propensity for both invasion and degradation of a type I collagen matrix. Furthermore, overexpression of either HIF-2alpha or MT1-MMP in the poorly invasive cell line, WT8, promoted collagen degradation and invasion of these cells. Finally, using RNAi, we show that inhibition of MT1-MMP suppresses tumor cell invasion of RCC cells. CONCLUSION: Our results suggest that MT1-MMP is a major mediator of tumor cell invasiveness and type I collagen degradation by VHL RCC cells that express either MT1-MMP or HIF-2alpha. As such, MT1-MMP may represent a novel target for anti-invasion therapy for this disease

    Regulation of Collagenase Gene Expression by IL-1 Beta Requires Transcriptional and Post-Transcriptional Mechanisms

    Get PDF
    Interleukin-1 beta is believed to contribute to the pathophysiology of rheumatoid arthritis by activating collagenase gene expression. We have used a cell culture model of rabbit synovial fibroblasts to examine the molecular mechanisms of IL-1 beta-mediated collagenase gene expression. Stimulation of rabbit synovial fibroblasts with 10 ng/ml recombinant human IL-1 beta resulted in a 20-fold increase in collagenase mRNA by 12 h. Transient transfection studies using collagenase promoter-CAT constructs demonstrated that proximal sequences responded poorly to IL-1 beta, possibly due to insufficient activation of AP-1 by this cytokine. More distal sequences were required for IL-1 beta responsiveness, with a 4700 bp construct showing approximately 5-fold induction above control. To examine post-transcriptional mechanisms, transcript from a human collagenase cDNA was constitutively produced by the simian virus 40 early promoter. IL-1 beta stabilized the constitutively expressed human transcript. Furthermore, mutation of the ATTTA motifs in the 3\u27 untranslated region of the human gene also stabilized the transcript. Finally, the rabbit collagenase 3\u27 untranslated region destabilized a constitutively transcribed chloramphenicol acetyltransferase transcript. These data indicate that in addition to activating transcription, IL-1 beta increases collagenase transcript stability by reversing the destabilizing effects of sequences in the 3\u27 untranslated region

    Isolation of a Collagenase cDNA Clone and Measurement of Changing Collagenase mRNA Levels during Induction in Rabbit Synovial Fibroblasts.

    Get PDF
    To facilitate our studies on the mechanisms controlling collagenase production at a molecular level in rabbit synovial fibroblasts, we have constructed a cDNA library using mRNAs isolated from cells induced with crystals of monosodium urate monohydrate. We have screened this library with cDNA probes made from induced and control mRNA populations. From among 30 clones that hybridized preferentially to the induced-cell probe, 4 contained collagenase sequences. The largest, a clone of 650 base pairs, was identified by its ability to hybrid select a mRNA that could be translated in a cell-free system into a product that was precipitable with monospecific antibody to collagenase. Using this clone to probe blots of RNA from induced cells, we detected the appearance of a collagenase mRNA of 2.7 kilobases within 5 hr of addition of urate. The level of collagenase mRNA continued to increase for 35-40 hr, when it was 60 to 90 times more abundant in induced cells than in control cells. The increase in mRNA levels correlated with an increase in immunoreactive collagenase protein that was detectable in culture medium by 10 hr

    Retinoid X Receptor and Peroxisome Proliferator-Activated Receptor-Gamma Agonists Cooperate to Inhibit Matrix Metalloproteinase Gene Expression

    Get PDF
    We recently described the ability of retinoid X receptor (RXR) ligand LG100268 (LG268) to inhibit interleukin-1-beta (IL-1-β)-driven matrix metalloproteinase-1 (MMP-1) and MMP-13 gene expression in SW-1353 chondrosarcoma cells. Other investigators have demonstrated similar effects in chondrocytes treated with rosiglitazone, a ligand for peroxisome proliferator-activated receptor-gamma (PPARγ), for which RXR is an obligate dimerization partner. The goals of this study were to evaluate the inhibition of IL-1--induced expression of MMP-1andMMP-13 by combinatorial treatment with RXR and PPAR ligands and to investigate the molecular mechanisms of this inhibition

    Overexpression of Collagenase 1 (MMP-1) Is Mediated by the ERK Pathway in Invasive Melanoma Cells: ROLE OFBRAFMUTATION AND FIBROBLAST GROWTH FACTOR SIGNALING

    Get PDF
    Melanoma progresses as a multistep process where the thickness of the lesion and depth of tumor invasion are the best prognostic indicators of clinical outcome. Degradation of the interstitial collagens in the extracellular matrix is an integral component of tumor invasion and metastasis, and much of this degradation is mediated by collagenase-1 (MMP-1), a member of the matrix metalloproteinase (MMP) family. MMP-1 levels increase during melanoma progression where they are associated with shorter disease-free survival. The Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) pathway is a major regulator of melanoma cell proliferation. Recently, BRAF has been identified as a common site of activating mutations, and, although many reports focus on its growth-promoting effects, this pathway has also been implicated in progression toward metastatic disease. In this study, we describe four melanoma cell lines that produce high levels of MMP-1 constitutively. In each cell line the Ras/Raf/MEK/ERK pathway is constitutively active and is the dominant pathway driving the production of MMP-1. Activation of this pathway arises due to either an activating mutation in BRAF (three cell lines) or autocrine fibroblast growth factor signaling (one cell line). Furthermore, blocking MEK/ERK activity inhibits melanoma cell proliferation and abrogates collagen degradation, thus decreasing their metastatic potential. Importantly, this inhibition of invasive behavior can occur in the absence of any detectable changes in cell proliferation and survival. Thus, constitutive activation of this MAPK pathway not only promotes the increased proliferation of melanoma cells but is also important for the acquisition of an invasive phenotype

    Diesel Exhaust Particles Activate the Matrix-Metalloproteinase-1 Gene in Human Bronchial Epithelia in a β-Arrestin–Dependent Manner via Activation of RAS

    Get PDF
    BACKGROUND: Diesel exhaust particles (DEPs) are globally relevant air pollutants that exert a detrimental human health impact. However, mechanisms of damage by DEP exposure to human respiratory health and human susceptibility factors are only partially known. Matrix metalloproteinase-1 (MMP-1) has been implied as an (etio)pathogenic factor in human lung and airway diseases such as emphysema, chronic obstructive pulmonary disease, chronic asthma, tuberculosis, and bronchial carcinoma and has been reported to be regulated by DEPs. OBJECTIVE: We elucidated the molecular mechanisms of DEPs' up-regulation of MMP-1. METHODS/RESULTS: Using permanent and primary human bronchial epithelial (HBE) cells at air-liquid interface, we show that DEPs activate the human MMP-1 gene via RAS and subsequent activation of RAF-MEK-ERK1/2 mitogen-activated protein kinase signaling, which can be scaffolded by beta-arrestins. Short interfering RNA mediated beta-arrestin1/2 knockout eliminated formation, subsequent nuclear trafficking of phosphorylated ERK1/2, and resulting MMP-1 transcriptional activation. Transcriptional regulation of the human MMP-1 promoter was strongly influenced by the presence of the -1607GG polymorphism, present in 60-80% of humans, which led to striking up-regulation of MMP-1 transcriptional activation. CONCLUSION: Our results confirm up-regulation of MMP-1 in response to DEPs in HBE and provide new mechanistic insight into how these epithelia, the first line of protection against environmental insults, up-regulate MMP-1 in response to DEP inhalation. These mechanisms include a role for the human -1607GG polymorphism as a susceptibility factor for an accentuated response, which critically depends on the ability of beta-arrestin1/2 to generate scaffolding and nuclear trafficking of phosphorylated ERK1/2
    corecore