42 research outputs found

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Observations of the High Redshift Universe

    Get PDF
    (Abridged) In these lectures aimed for non-specialists, I review progress in understanding how galaxies form and evolve. Both the star formation history and assembly of stellar mass can be empirically traced from redshifts z~6 to the present, but how the various distant populations inter-relate and how stellar assembly is regulated by feedback and environmental processes remains unclear. I also discuss how these studies are being extended to locate and characterize the earlier sources beyond z~6. Did early star-forming galaxies contribute significantly to the reionization process and over what period did this occur? Neither theory nor observations are well-developed in this frontier topic but the first results presented here provide important guidance on how we will use more powerful future facilities.Comment: To appear in `First Light in Universe', Saas-Fee Advanced Course 36, Swiss Soc. Astrophys. Astron. in press. 115 pages, 64 figures (see http://www.astro.caltech.edu/~rse/saas-fee.pdf for hi-res figs.) For lecture ppt files see http://obswww.unige.ch/saas-fee/preannouncement/course_pres/overview_f.htm

    Benign monoclonal expansion of CD8+ lymphocytes in HIV infection

    No full text
    Background—A transient expansion of the CD8+ T cell pool normally occurs in the early phase of HIV infection. Persistent expansion of this pool is observed in two related settings: diffuse infiltrative lymphocytosis syndrome (DILS) and HIV associated CD8+ lymphocytosis syndrome. Aim—To investigate a group of HIV infected patients with CD8+ lymphocytosis syndrome with particular emphasis on whether monoclonality was present. Methods—A group of 18 patients with HIV-1 infection and persistent circulating CD8+ lymphocytosis was compared with 21 HIV positive controls. Serum samples were tested for antinuclear antibodies, antibodies to extractable nuclear antigens, immunoglobulin levels, paraproteins, human T lymphotropic virus type 1 (HTLV-1), Epstein-Barr virus, and cytomegalovirus serology. Lymphocyte phenotyping and HLA-DR typing was performed, and T cell receptor (TCR) gene rearrangement studies used to identify monoclonal populations of T cells. CD4+ and CD8+ subsets of peripheral blood lymphocytes were purified to determine whether CD8+ populations inhibited HIV replication in autologous CD4+ cells. Results—A subgroup of patients with HIV-1 infection was found to have expanded populations of CD8+ T cell large granular lymphocytes persisting for 6 to 30 months. The consensus immunophenotype was CD4- CD8+ DR(high) CD11a+ CD11c+ CD16- CD28± CD56- CD57+, consistent with typical T cell large granular lymphocytes expressing cellular activation markers. Despite the finding of monoclonal TCR gene usage in five of 18 patients, there is evidence that the CD8+ expansions are reactive populations capable of mediating non-cytotoxic inhibition of HIV replication. Conclusions—A subgroup of HIV positive patients has CD8+ lymphocytosis, but despite the frequent occurrence of monoclonal TCR gene usage there is evidence that this represents an immune response to viral infection rather than a malignant disorder. Key Words: HIV infection ‱ CD8+ lymphocytosis ‱ clonalit
    corecore