4 research outputs found

    The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli

    Get PDF
    AbstractCapsaicin, the main pungent ingredient in “hot” chili peppers, elicits burning pain by activating specific (vanilloid) receptors on sensory nerve endings. The cloned vanilloid receptor (VR1) is a cation channel that is also activated by noxious heat. Here, analysis of heat-evoked single channel currents in excised membrane patches suggests that heat gates VR1 directly. We also show that protons decrease the temperature threshold for VR1 activation such that even moderately acidic conditions (pH ≤ 5.9) activate VR1 at room temperature. VR1 can therefore be viewed as a molecular integrator of chemical and physical stimuli that elicit pain. Immunocytochemical analysis indicates that the receptor is located in a neurochemically heterogeneous population of small diameter primary afferent fibers. A role for VR1 in injury-induced hypersensitivity at the level of the sensory neuron is presented

    Open-source Software Sustainability Models: Initial White Paper From the Informatics Technology for Cancer Research Sustainability and Industry Partnership Working Group

    No full text
    BackgroundThe National Cancer Institute Informatics Technology for Cancer Research (ITCR) program provides a series of funding mechanisms to create an ecosystem of open-source software (OSS) that serves the needs of cancer research. As the ITCR ecosystem substantially grows, it faces the challenge of the long-term sustainability of the software being developed by ITCR grantees. To address this challenge, the ITCR sustainability and industry partnership working group (SIP-WG) was convened in 2019. ObjectiveThe charter of the SIP-WG is to investigate options to enhance the long-term sustainability of the OSS being developed by ITCR, in part by developing a collection of business model archetypes that can serve as sustainability plans for ITCR OSS development initiatives. The working group assembled models from the ITCR program, from other studies, and from the engagement of its extensive network of relationships with other organizations (eg, Chan Zuckerberg Initiative, Open Source Initiative, and Software Sustainability Institute) in support of this objective. MethodsThis paper reviews the existing sustainability models and describes 10 OSS use cases disseminated by the SIP-WG and others, including 3D Slicer, Bioconductor, Cytoscape, Globus, i2b2 (Informatics for Integrating Biology and the Bedside) and tranSMART, Insight Toolkit, Linux, Observational Health Data Sciences and Informatics tools, R, and REDCap (Research Electronic Data Capture), in 10 sustainability aspects: governance, documentation, code quality, support, ecosystem collaboration, security, legal, finance, marketing, and dependency hygiene. ResultsInformation available to the public reveals that all 10 OSS have effective governance, comprehensive documentation, high code quality, reliable dependency hygiene, strong user and developer support, and active marketing. These OSS include a variety of licensing models (eg, general public license version 2, general public license version 3, Berkeley Software Distribution, and Apache 3) and financial models (eg, federal research funding, industry and membership support, and commercial support). However, detailed information on ecosystem collaboration and security is not publicly provided by most OSS. ConclusionsWe recommend 6 essential attributes for research software: alignment with unmet scientific needs, a dedicated development team, a vibrant user community, a feasible licensing model, a sustainable financial model, and effective product management. We also stress important actions to be considered in future ITCR activities that involve the discussion of the sustainability and licensing models for ITCR OSS, the establishment of a central library, the allocation of consulting resources to code quality control, ecosystem collaboration, security, and dependency hygiene
    corecore