3 research outputs found
Proficiency Program for Real-Time PCR Diagnosis of Bordetella pertussis Infections in French Hospital Laboratories and at the French National Reference Center for Whooping Cough and other Bordetelloses
ABSTRACT With the support of a ministerial program for innovative and expensive technologies, dedicated to the economic evaluation of laboratory diagnosis of pertussis by real-time PCR, external quality assessment for real-time IS 481 PCR was carried out. Coordinated by the National Centre of Reference of Pertussis and other Bordetelloses (NCR), this study aimed to harmonize and to assess the performances of eight participating microbiology hospital laboratories throughout the French territory. Between January 2006 and February 2007, 10 proficiency panels were sent by the NCR (ascending proficiency program), representing a total of 49 samples and including eight panels to analyze and evaluate the global sensitivity and specificity of real-time PCR, one to assess the limit of detection, and one to evaluate nucleic acid extraction methods. As part of the descending proficiency program, extracted DNA from clinical samples was sent by the eight participating laboratories in different panels and analyzed by the NCR. In the ascending proficiency analysis, the sensitivity and specificity of the real-time PCR methods were 92.2% and 94.3%, respectively. The limit of detection of the different methods ranged between 0.1 and 1 fg/ÎĽl (0.2 to 2 CFU/ÎĽl). The nucleic acid extraction methods showed similar performances. During the descending proficiency analysis, performed with 126 samples, the result of the NCR for 15 samples (11.9%) was discordant with the result obtained by the source laboratory. Despite several initial differences, harmonization was easy and performances were homogeneous. However, the risk of false-positive results remains quite high, and we strongly recommend establishment of uniform quality control procedures performed regularly
Rapid characterization of a Delta-Omicron SARS-CoV-2 recombinant detected in Europe
Abstract Recombination is a crucial process in the evolution of many organisms. Although the evolutionary reasons behind its occurrence in RNA viruses are debated, this phenomenon has been associated with major epidemiological events such as virus host range expansion, antigenic shift or variation in virulence 1,2, and this process occurs frequently in positive strand RNA viruses such as coronaviruses. The SARS-CoV-2 pandemic has been associated with the repeated emergence of variants of concern presenting increased transmissibility, severity or immune escape 3. The recent extensive circulation of Delta worldwide and its subsequent replacement by viruses of the Omicron lineage 4 (BA.1 then BA.2), have created conditions for genetic exchanges between viruses with both genetic diversity and phenotypic specificities 5-7. Here we report the identification and in vitro and in vivo characterization of a Delta-Omicron recombinant in Europe. This recombinant exhibits immune escape properties similar to Omicron, while its behavior in mice expressing the human ACE2 receptor is more similar to Delta. This recombinant provides a unique and natural opportunity to better understand the genotype to phenotype links in SARS-CoV-2