1,735 research outputs found

    The future of coastal upwelling in the Humboldt current from model projections

    Get PDF
    The Humboldt coastal upwelling system in the eastern South Pacific ocean is one of the most productive marine ecosystems in the world. A weakening of the upwelling activity could lead to severe ecological impacts. As coastal upwelling in eastern boundary systems is mainly driven by wind stress, most studies so far have analysed wind patterns change through the 20th and 21st Centuries in order to understand and project the phenomenon under specific forcing scenarios. Mixed results have been reported, and analyses from General Circulation Models have suggested even contradictory trends of wind stress for the Humboldt system. In this study, we analyse the ocean upwelling directly in 13 models contributing to phase 5 of the Coupled Model Intercomparison Project (CMIP5) in both the historical simulations and an extreme climate change scenario (RCP8.5). The upwelling is represented by the upward ocean mass flux, a newly-included variable that represents the vertical water transport. Additionally, wind stress, ocean stratification, Ekman layer depth and thermocline depth were also analysed to explore their interactions with coastal upwelling throughout the period studied. The seasonal cycle of coastal upwelling differs between the Northern and Southern Humboldt areas. At lower latitudes, the upwelling season spans most of the autumn, winter and spring. However, in the Southern Humboldt area the upwelling season takes place in spring and the summertime with downwelling activity in winter. This persists throughout the Historical and RCP8.5 simulations. For both the Northern and Southern Humboldt areas an increasing wind stress is projected. However, different trends of upwelling intensity are observed away from the sea surface. Whereas wind stress will continue controlling the decadal variability of coastal upwelling on the whole ocean column analysed (surface to 300 m depth), an increasing disconnect with upwelling intensity is projected below 100 m depth throughout the 21st Century. This relates to an intensification of ocean stratification under global warming as shown by the sea water temperature profiles. Additionally, a divergence between the Ekman layer and thermocline depths is also evidenced. Given the interaction of upwelled nutrients and microscopic organisms essential for fish growth, a potential decline of coastal upwelling at depth could lead to unknown ecological and socio-economical effects

    Perceptions of Psychological Coercion and Human Trafficking in the West Midlands of England: Beginning to Know the Unknown

    Get PDF
    Modern slavery is less overt than historical state-sanctioned slavery because psychological abuse is typically used to recruit and then control victims. The recent UK Draft Modern Slavery Bill, and current UK government anti-slavery strategy relies heavily on a shared understanding and public cooperation to tackle this crime. Yet, UK research investigating public understanding of modern slavery is elusive. We report community survey data from 682 residents of the Midlands of England, where modern slavery is known to occur, concerning their understanding of nonphysical coercion and human trafficking (one particular form of modern slavery). Analysis of quantitative data and themed categorization of qualitative data revealed a mismatch between theoretical frameworks and understanding of psychological coercion, and misconceptions concerning the nature of human trafficking. Many respondents did not understand psychological coercion, believed that human trafficking did not affect them, and confused trafficking with immigration. The public are one of the most influential interest groups, but only if well informed and motivated towards positive action. Our findings suggest the need for strategically targeted public knowledge exchange concerning this crime

    Finite momentum condensation in a pumped microcavity

    Full text link
    We calculate the absorption spectra of a semiconductor microcavity into which a non-equilibrium exciton population has been pumped. We predict strong peaks in the spectrum corresponding to collective modes analogous to the Cooper modes in superconductors and fermionic atomic gases. These modes can become unstable, leading to the formation of off-equilibrium quantum condensates. We calculate a phase diagram for condensation, and show that the dominant instabilities can be at a finite momentum. Thus we predict the formation of inhomogeneous condensates, similar to Fulde-Ferrel-Larkin-Ovchinnikov states.Comment: 7 pages, 4 figures, updated to accepted versio

    The monomial representations of the Clifford group

    Full text link
    We show that the Clifford group - the normaliser of the Weyl-Heisenberg group - can be represented by monomial phase-permutation matrices if and only if the dimension is a square number. This simplifies expressions for SIC vectors, and has other applications to SICs and to Mutually Unbiased Bases. Exact solutions for SICs in dimension 16 are presented for the first time.Comment: Additional author and exact solutions to the SIC problem in dimension 16 adde

    The distribution of pelagic sound scattering layers across the southwest Indian Ocean

    Get PDF
    Ship of Opportunity Data were sourced from the Integrated Marine Observing System (IMOS)—an initiative of the Australian Government being conducted as part of the National Collaborative Research Infrastructure Strategy and the Super Science Initiative. Other acoustic data were collected as part of the Southwest Indian Ocean Seamounts Project (http://www.iucn.org/marine/seamounts) which was supported supported by the EAF Nansen Project, the Food and Agriculture Organization of the United Nations, the Global Environment Facility, the International Union for the Conservation of Nature, the Natural Environment Research Council (Grant NE/F005504/1), the Leverhulme Trust (Grant F00390C) and the Total Foundation. We thank the Masters, officers, crews and science parties of cruises DFN 2009-410 and JCO66/67 for their assistance during echosounder calibration and data acquisition, and two anonymous reviewers for their comments. PHBS was supported by the German National Academic Foundation, a Cusanuswerk doctoral fellowship, and a Lesley & Charles Hilton-Brown Scholarship.Shallow and deep scattering layers (SLs) were surveyed with split-beam echosounders across the southwest Indian Ocean (SWIO) to investigate their vertical and geographical distribution. Cluster analysis was employed to objectively classify vertical backscatter profiles. Correlations between backscatter and environmental covariates were modelled using generalized additive mixed models (GAMMs) with spatial error structures. Structurally distinct SL regimes were found across the Subantarctic Front. GAMMs indicated a close relationship between sea surface temperature and mean volume backscatter, with significantly elevated backscatter in the subtropical convergence zone. The heterogeneous distribution of scattering layer biota reflects the biogeographic zonation of the survey area and is likely to have implications for predator foraging and carbon cycling in the Indian Ocean.PostprintPeer reviewe

    Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene-Pleistocene seawater Mg/Ca, temperature and sea level change

    Get PDF
    Foraminifera Mg/Ca paleothermometry forms the basis of a substantial portion of ocean temperature reconstruction over the last 5 Ma. Furthermore, coupled Mg/Ca–oxygen isotope (δ18O) measurements of benthic foraminifera can constrain eustatic sea level (ESL) independent of paleo-shoreline derived approaches. However, this technique suffers from uncertainty regarding the secular variation of the Mg/Ca seawater ratio (Mg/Casw) on timescales of millions of years. Here we present coupled seawater–test Mg/Ca–temperature laboratory calibrations of Globigerinoides ruber in order to test the widely held assumptions that (1) seawater–test Mg/Ca co-vary linearly, and (2) the Mg/Ca–temperature sensitivity remains constant with changing Mg/Casw. We find a nonlinear Mg/Catest–Mg/Casw relationship and a lowering of the Mg/Ca–temperature sensitivity at lower than modern Mg/Casw from 9.0% ◦C−1 at Mg/Casw = 5.2 mol mol−1 to 7.5 ± 0.9%◦C−1 at 3.4 mol mol−1. Using our calibrations to more accurately calculate the offset between Mg/Ca and biomarker-derived paleotemperatures for four sites, we derive a Pliocene Mg/Casw ratio of ∼4.3 mol mol−1. This Mg/Casw implies Pliocene ocean temperature 0.9–1.9 ◦C higher than previously reported and, by extension, ESL ∼30 m lower compared to when one assumes that Pliocene Mg/Casw is the same as at present. Correcting existing benthic foraminifera datasets for Mg/Casw indicates that deep water source composition must have changed through time, therefore seawater oxygen isotope reconstructions relative to present day cannot be used to directly reconstruct Pliocene ESL

    Global ensemble of temperatures over 1850-2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)

    Get PDF
    Instrumental global temperature records are derived from the network of in situ measurements of land and sea surface temperatures. This observational evidence is seen as being fundamental to climate science. Therefore, the accuracy of these measurements is of prime importance for the analysis of temperature variability. There are spatial gaps in the distribution of instrumental temperature measurements across the globe. This lack of spatial coverage introduces coverage error. An approximate Bayesian computation based multi-resolution lattice kriging is developed and used to quantify the coverage errors through the variance of the spatial process at multiple spatial scales. It critically accounts for the uncertainties in the parameters of this advanced spatial statistics model itself, thereby providing, for the first time, a full description of both the spatial coverage uncertainties along with the uncertainties in the modeling of these spatial gaps. These coverage errors are combined with the existing estimates of uncertainties due to observational issues at each station location. It results in an ensemble of 100 000 monthly temperatures fields over the entire globe that samples the combination of coverage, parametric and observational uncertainties from 1850 to 2018 over a 5∘×5∘ grid

    The Limited Role of Mutually Unbiased Product Bases in Dimension Six

    Full text link
    We show that a complete set of seven mutually unbiased bases in dimension six, if it exists, cannot contain more than one product basis.Comment: 8 pages, identical to published versio
    corecore