89 research outputs found

    The Effect of Epstein-Barr Virus Latent Membrane Protein 2 Expression on the Kinetics of Early B Cell Infection

    Get PDF
    Infection of human B cells with wild-type Epstein-Barr virus (EBV) in vitro leads to activation and proliferation that result in efficient production of lymphoblastoid cell lines (LCLs). Latent Membrane Protein 2 (LMP2) is expressed early after infection and previous research has suggested a possible role in this process. Therefore, we generated recombinant EBV with knockouts of either or both protein isoforms, LMP2A and LMP2B (Δ2A, Δ2B, Δ2A/Δ2B) to study the effect of LMP2 in early B cell infection. Infection of B cells with Δ2A and Δ2A/Δ2B viruses led to a marked decrease in activation and proliferation relative to wild-type (wt) viruses, and resulted in higher percentages of apoptotic B cells. Δ2B virus infection showed activation levels comparable to wt, but fewer numbers of proliferating B cells. Early B cell infection with wt, Δ2A and Δ2B viruses did not result in changes in latent gene expression, with the exception of elevated LMP2B transcript in Δ2A virus infection. Infection with Δ2A and Δ2B viruses did not affect viral latency, determined by changes in LMP1/Zebra expression following BCR stimulation. However, BCR stimulation of Δ2A/Δ2B cells resulted in decreased LMP1 expression, which suggests loss of stability in viral latency. Long-term outgrowth assays revealed that LMP2A, but not LMP2B, is critical for efficient long-term growth of B cells in vitro. The lowest levels of activation, proliferation, and LCL formation were observed when both isoforms were deleted. These results suggest that LMP2A appears to be critical for efficient activation, proliferation and survival of EBV-infected B cells at early times after infection, which impacts the efficient long-term growth of B cells in culture. In contrast, LMP2B did not appear to play a significant role in these processes, and long-term growth of infected B cells was not affected by the absence of this protein. © 2013 Wasil et al

    Stimulation of homology-directed gene targeting at an endogenous human locus by a nicking endonuclease

    Get PDF
    Homologous recombination (HR) is a highly accurate mechanism of DNA repair that can be exploited for homology-directed gene targeting. Since in most cell types HR occurs very infrequently (∼10−6 to 10−8), its practical application has been largely restricted to specific experimental systems that allow selection of the few cells that become genetically modified. HR-mediated gene targeting has nonetheless revolutionized genetics by greatly facilitating the analysis of mammalian gene function. Recent studies showed that generation of double-strand DNA breaks at specific loci by designed endonucleases greatly increases the rate of homology-directed gene repair. These findings opened new perspectives for HR-based genome editing in higher eukaryotes. Here, we demonstrate by using donor DNA templates together with the adeno-associated virus (AAV) Rep78 and Rep68 proteins that sequence- and strand-specific cleavage at a native, predefined, human locus can also greatly enhance homology-directed gene targeting. Our findings argue for the development of other strategies besides direct induction of double-strand chromosomal breaks to achieve efficient and heritable targeted genetic modification of cells and organisms. Finally, harnessing the cellular HR pathway through Rep-mediated nicking expands the range of strategies that make use of AAV elements to bring about stable genetic modification of human cells

    The Role of Thioredoxin Reductases in Brain Development

    Get PDF
    The thioredoxin-dependent system is an essential regulator of cellular redox balance. Since oxidative stress has been linked with neurodegenerative disease, we studied the roles of thioredoxin reductases in brain using mice with nervous system (NS)-specific deletion of cytosolic (Txnrd1) and mitochondrial (Txnrd2) thioredoxin reductase. While NS-specific Txnrd2 null mice develop normally, mice lacking Txnrd1 in the NS were significantly smaller and displayed ataxia and tremor. A striking patterned cerebellar hypoplasia was observed. Proliferation of the external granular layer (EGL) was strongly reduced and fissure formation and laminar organisation of the cerebellar cortex was impaired in the rostral portion of the cerebellum. Purkinje cells were ectopically located and their dendrites stunted. The Bergmann glial network was disorganized and showed a pronounced reduction in fiber strength. Cerebellar hypoplasia did not result from increased apoptosis, but from decreased proliferation of granule cell precursors within the EGL. Of note, neuron-specific inactivation of Txnrd1 did not result in cerebellar hypoplasia, suggesting a vital role for Txnrd1 in Bergmann glia or neuronal precursor cells

    Selenium and development.

    No full text
    no abstrac

    Environmental samples make soiled bedding sentinels dispensable for hygienic monitoring of IVC-reared mouse colonies.

    No full text
    Accurate knowledge of the health status of experimental animals is pivotal to high scientific and ethical standards in biomedical research. Individually ventilated cages (IVCs) are becoming the predominant system for housing laboratory mice, as they prevent cage-to-cage infections. However, this feature constitutes a major drawback for hygienic monitoring of mouse colonies, as traditional screening programs build on reliable transmission of infectious agents from experimental animals to sentinel mice commonly tested as representatives for the mouse colonies. In recent years, the laboratory animal community has realized that sentinels are ineffectual for screening mouse colonies in IVC systems because infections are often not transmitted to sentinels and therefore remain undetected. Furthermore, sentinel monitoring results in high numbers of used animals. In contrast, environmental monitoring provides a more reliable approach to identify and exclude pathogens in rodent colonies. In recent studies we provided evidence that polymerase chain reaction analysis of exhaust air particles is superior to soiled bedding sentinels for different agents. In this study, we show that testing pooled environmental samples generates more meaningful information compared to soiled bedding sentinels during routine hygienic monitoring in different barriers

    Exhaust air particle pcr as a new method for the hygienic monitoring of ivc reared rodent colonies: A contribution to the reduction of experimental animals.

    No full text
    The hygienic status of laboratory animals is pivotal for animal health as well as for the reliability and reproducibility of experimental results in biomedical research. Common health monitoring strategies of individually ventilated cage (IVC) reared rodent colonies involve sentinel animals exposed to soiled bedding of the colony to monitor. After an adequate exposure time these sentinel mice representing all animals housed in the respective racks are euthanized and examined for unwanted organisms which results in higher numbers of animals used for the sole purpose of health monitoring. Sentinel monitoring is subject to limitations: IVCs prevent transmission of airborne pathogens; transmission of unwanted organisms to sentinels by used bedding is uncertain due to dilution and susceptibility of sentinels to some pathogens is low. Screening of exhaust air dust of IVC racks for nucleic acids of unwanted pathogens is a relatively new and promising approach to improve health monitoring in IVC systems whilst avoiding the additional use of animals for this purpose. This review article summarizes current studies on the new health monitoring technology. Exhaust Air Particle (EAP) PCR outperformed sentinel monitoring by far. Infections have been detected newly or at lower prevalence. Hence, laboratory animals can be replaced in biomedical research and knowledge on the hygienic status of rodent colonies can be improved. Since the technology has a broad applicability the possible impact as replacement according to the 3Rs is remarkable

    Detection of Murine Astrovirus and <em>Myocoptes musculinus</em> in individually ventilated caging systems: Investigations to expose suitable detection methods for routine hygienic monitoring.

    No full text
    Murine Astrovirus is one of the most prevalent viral agents in laboratory rodent facilities worldwide, but its influence on biomedical research results is poorly examined. Due to possible influence on research results and high seroprevalence rates in mice, it appears useful to include this virus into routine health monitoring programs. In order to establish exhaust air particle PCR as a reliable detection method for Murine Astrovirus infections in mice kept in individually ventilated cages (IVC) and compare the method to sentinel mice monitoring regarding reproducibility and detection limit, we conducted a study with defined Murine Astrovirus cage prevalence. In parallel, the efficacy of both detection strategies (soiled-bedding sentinel (SBS) and exhaust air dust (EAD) analysis) was tested for Myocoptes musculinus. The fur mite was used as a reference organism during the whole study period to ensure the validity of this method. Because some publications already demonstrated successful detection of several pathogens, including murine fur mite species, via EAP-PCR. Detection of Murine Astrovirus infections at low prevalence is possible with both methods tested. Detection by exhaust air particles (EAP) is faster, more sensitive and more reliable compared to soiled bedding sentinels (SBS). Exhaust air particle PCR also detected the reference organism Myocoptes musculinus, which was not detected at all by sentinel mice, not even by high sensitivity fur swab qPCR. In conclusion, Murine Astrovirus can be detected by both exhaust air particle PCR and soiled bedding sentinels. We recommend exhaust air particle PCR as the better detection technique for Murine Astrovirus, because it is more reliable. Environmental samples are the method of choice for detection of Myocoptes musculinus because relying on soiled bedding sentinels harbors a big risk of missing existing infestations
    corecore