7 research outputs found

    Analysis of parasitic protozoa at the single-cell level using microfluidic impedance cytometry

    Get PDF
    At present, there are few technologies which enable the detection, identification and viability analysis of protozoan pathogens including Cryptosporidium and/or Giardia at the single (oo)cyst level. We report the use of Microfluidic Impedance Cytometry (MIC) to characterise the AC electrical (impedance) properties of single parasites and demonstrate rapid discrimination based on viability and species. Specifically, MIC was used to identify live and inactive C. parvum oocysts with over 90% certainty, whilst also detecting damaged and/or excysted oocysts. Furthermore, discrimination of Cryptosporidium parvum, Cryptosporidium muris and Giardia lamblia, with over 92% certainty was achieved. Enumeration and identification of (oo)cysts can be achieved in a few minutes, which offers a reduction in identification time and labour demands when compared to existing detection methods

    Multiwavelength Evidence of the Physical Processes in Radio Jets

    No full text

    Agonists of Toll-Like Receptor 9

    No full text

    Kiloparsec-Scale AGN Jets

    No full text

    Cryptic species within the cosmopolitan desiccation-tolerant moss Grimmia laevigata

    Get PDF
    The common cushion moss Grimmia laevigata (Bridel) Bridel grows on bare rock in a broad range of environments on every continent except Antarctica. As such, it must harbor adaptations to a remarkably broad set of environmental stresses, the extremes of which can include very high temperatures, prolonged nearly complete desiccation, and high ultraviolet B (UVB) exposure. Yet, like many mosses, G. laevigata shows very little morphological variability across its cosmopolitan range. This presents an evolutionary puzzle, the solution to which lies in understanding the phylogeographic structure of this morphologically simple organism. Here we report the results of an analysis of amplified fragment length polymorphisms (AFLPs) in G. laevigata, focusing on individuals from the California Floristic Province. We found evidence that populations within California constitute two distinct geographically overlapping cryptic species. Each clade harbors multiple private alleles, indicating they have been genetically isolated for some time. We suggest that the existence of cryptic species within G. laevigata, in combination with its life history, growth habits, and extreme desiccation tolerance, makes this moss an ideal research tool and a candidate for a biological indicator of climate change and pollution

    Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection

    No full text
    corecore