823 research outputs found
Positive-Operator-Valued Time Observable in Quantum Mechanics
We examine the longstanding problem of introducing a time observable in
Quantum Mechanics; using the formalism of positive-operator-valued measures we
show how to define such an observable in a natural way and we discuss some
consequences.Comment: 13 pages, LaTeX, no figures. Some minor changes, expanded the
bibliography (now it is bigger than the one in the published version),
changed the title and the style for publication on the International Journal
of Theoretical Physic
Complete pressure dependent phase diagrams for SrFe2As2 and BaFe2As2
The temperature dependent electrical resistivity of single crystalline
SrFe2As2 and BaFe2As2 has been measured in a liquid medium, modified Bridgman
anvil cell for pressures in excess of 75 kbar. These data allow for the
determination of the pressure dependence of the higher temperature, structural
/ antiferromagnetic phase transitions as well as the lower temperature
superconducting phase transition. For both compounds the ambient pressure,
higher temperature structural / antiferromagnetic phase transition can be fully
suppressed with a dome-like region of zero resistivity found to be centered
about its critical pressure. Indeed, qualitatively, the temperature dependence
of the resistivity curves closest to the critical pressures are the closest to
linear, consistent with possible quantum criticality. For pressures
significantly higher than the critical pressure the zero resistivity state is
suppressed and the low temperature resistivity curves asymptotically approach a
universal, low temperature manifold. These results are consistent with the
hypothesis that correlations / fluctuations associated with the
ambient-pressure, high-temperature, tetragonal phase have to be brought to low
enough temperature to allow superconductivity, but if too fully suppressed can
lead to the loss of the superconducting state
Three Questions on Lorentz Violation
We review the basics of the two most widely used approaches to Lorentz
violation - the Stardard Model Extension and Noncommutative Field Theory - and
discuss in some detail the example of the modified spectrum of the synchrotron
radiation. Motivated by touching upon such a fundamental issue as Lorentz
symmetry, we ask three questions: What is behind the search for Lorentz
violation? Is String Theory a physical theory? Is there an alternative to
Supersymmetry?Comment: 16 pages; invited luecture at DICE2006 - Piombino, Italy - September
200
Simultaneous Observations of GRS 1758-258 in 1997 by VLA, IRAM, SEST, RXTE and OSSE: Spectroscopy and Timing
We report the results of our multi-wavelength observations of GRS 1758-258
made in August 1997. The energy bands include radio, millimeter, X-ray, and
gamma-ray. The observations enable us to obtain a complete spectrum of the
source over an energy range of 2 - 500 keV. The spectrum shows that GRS
1758-258 was in its hard state. It is well fitted by the Sunyaev-Titarchuk (ST)
Compton scattering model. The spectrum is also fit by a power law with an
exponential cutoff (PLE) plus a soft black-body component. The temperature of
the soft component is about 1.2 keV, and the energy flux is less than 1.5% of
the total X- and gamma-ray flux. The deduced hydrogen column density is in the
range of (0.93 - 2.0) 10^{22} cm^{-2}. No significant iron lines are detected.
The radio emission has a flat energy spectrum. The daily radio, X-ray and
gamma-ray light curves show that GRS 1758-258 was stable during the observation
period, but was highly variable on smaller time scales in X- and gamma-rays.
The power density spectra are typical for the low-state, but we find the photon
flux for the 5 to 10 keV band to be more variable than that in the other two
energy bands (2 - 5 keV and 10 - 40 keV). Harmonically spaced quasi-periodic
oscillations (QPOs) are observed in the power spectra. The phase lags between
the hard photons and the soft photons have a flat distribution over a wide
range of frequencies. A high coherence of about 1.0 (0.01 - 1 Hz) between the
hard photons and the soft photons is also obtained in our observations. We
compare these results with two variation models. Our millimeter observations
did not reveal any conclusive signatures of an interaction between the jet from
GRS 1758-258 and the molecular cloud that lies in the direction of GRS
1758-258.Comment: 32 pages, 13 figures, to appear in ApJ, 2000, V.533, no. 1, Apr. 10.
For better figure resolution, please directly download the paper from
http://spacsun.rice.edu/~lin/publication.htm
The Kondo Resonance in Electron Spectroscopy
The Kondo resonance is the spectral manifestation of the Kondo properties of
the impurity Anderson model, and also plays a central role in the dynamical
mean-field theory (DMFT) for correlated electron lattice systems. This article
presents an overview of electron spectroscopy studies of the resonance for the
4f electrons of cerium compounds, and for the 3d electrons of V_2O_3, including
beginning efforts at using angle resolved photoemission to determine the
k-dependence of the resonance. The overview includes the comparison and
analysis of spectroscopy data with theoretical spectra as calculated for the
impurity model and as obtained by DMFT, and the Kondo volume collapse
calculation of the cerium alpha-gamma phase transition boundary, with its
spectroscopic underpinnings.Comment: 32 pages, 11 figures, 151 references; paper for special issue of J.
Phys. Soc. Jpn. on "Kondo Effect--40 Years after the Discovery
On the psychometric study of human life history strategies: State of the science and evidence of two independent dimensions
This article attends to recent discussions of validity in psychometric research on human life history strategy (LHS), provides a constructive critique of the extant literature, and describes strategies for improving construct validity. To place the psychometric study of human LHS on more solid ground, our review indicates that researchers should (a) use approaches to psychometric modeling that are consistent with their philosophies of measurement, (b) confirm the dimensionality of life history indicators, and (c) establish measurement invariance for at least a subset of indicators. Because we see confirming the dimensionality of life history indicators as the next step toward placing the psychometrics of human LHS on more solid ground, we use nationally representative data and structural equation modeling to test the structure of middle adult life history indicators. We found statistically independent mating competition and Super-K dimensions and the effects of parental harshness and childhood unpredictability on Super-K were consistent with past research. However, childhood socioeconomic status had a moderate positive effect on mating competition and no effect on Super-K, while unpredictability did not predict mating competition. We conclude that human LHS is more complex than previously suggested—there does not seem to be a single dimension of human LHS among Western adults and the effects of environmental components seem to vary between mating competition and Super-K
Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics
In this article, we analyze the third of three papers, in which Einstein
presented his quantum theory of the ideal gas of 1924-1925. Although it failed
to attract the attention of Einstein's contemporaries and although also today
very few commentators refer to it, we argue for its significance in the context
of Einstein's quantum researches. It contains an attempt to extend and exhaust
the characterization of the monatomic ideal gas without appealing to
combinatorics. Its ambiguities illustrate Einstein's confusion with his initial
success in extending Bose's results and in realizing the consequences of what
later became to be called Bose-Einstein statistics. We discuss Einstein's
motivation for writing a non-combinatorial paper, partly in response to
criticism by his friend Ehrenfest, and we paraphrase its content. Its arguments
are based on Einstein's belief in the complete analogy between the
thermodynamics of light quanta and of material particles and invoke
considerations of adiabatic transformations as well as of dimensional analysis.
These techniques were well-known to Einstein from earlier work on Wien's
displacement law, Planck's radiation theory, and the specific heat of solids.
We also investigate the possible role of Ehrenfest in the gestation of the
theory.Comment: 57 pp
The crossover from propagating to strongly scattered acoustic modes of glasses observed in densified silica
Spectroscopic results on low frequency excitations of densified silica are
presented and related to characteristic thermal properties of glasses. The end
of the longitudinal acoustic branch is marked by a rapid increase of the
Brillouin linewidth with the scattering vector. This rapid growth saturates at
a crossover frequency Omega_co which nearly coincides with the center of the
boson peak. The latter is clearly due to additional optic-like excitations
related to nearly rigid SiO_4 librations as indicated by hyper-Raman
scattering. Whether the onset of strong scattering is best described by
hybridization of acoustic modes with these librations, by their elastic
scattering (Rayleigh scattering) on the local excitations, or by soft
potentials remains to be settled.Comment: 14 pages, 6 figures, to be published in a special issue of J. Phys.
Condens. Matte
- …