3,911 research outputs found
Solar plasma experiment
Solar plasma experiment by Mariner IV space prob
An Integrated Approach for Evaluating Students' Achievement of Clinical Objectives
During the clinical phase of undergraduate medical education (UME) students are often geographically dispersed and assigned to preceptors throughout the community. Monitoring, documenting, and evaluating their clinical experiences and achievement of clinical objectives in this venue becomes a challenge, especially for large UME programs. The purpose of this manuscript is to discuss a method for developing and implementing a school-wide evaluation system for the clinical phase of UME. This type of evaluation system links students' clinical experiential data with the objectives of a clerkship, using technological advances, such as the Personal Digital Assistant (PDA), Internet, and intranet. Clerkship directors are provided real-time reports on student's progress toward achieving clerkship objectives and are able to monitor the clinical activities of the clerkship. Students on the other hand, will be empowered to take more control of their educational experiences by monitoring their own progress
Professional Responsibility and the First Amendment: Are Missouri Attorneys Free to Express Their Views
The history of First Amendment cases in our country demonstrates that many attorneys have argued successfully for the free speech rights of their clients. When an attorney seeks to invoke the same right as a defense in a professional disciplinary action, however, the attorney may find less shelter under the First Amendment. This Note examines the extent of first amendment protection a Missouri attorney receives when criticizing courts or judges
Ovarian preservation techniques for female pelvic radiotherapy techniques: a critical review
AbstractIntroductionAdvances in treatment over recent years have increased the long-term survival of young, female cancer patients; unfortunately these treatments bring a significant risk of ovarian failure and infertility. This literature review aimed to determine the optimal technique for ovarian preservation in pre-menopausal women receiving pelvic radiotherapy (IMRT). The traditional method comprises surgical transposition; IMRT and other emerging techniques may offer alternative non-invasive means of sparing ovaries and minimising dose.MethodsA critical review of the evidence pertaining to pelvic radiotherapy and ovarian sparing was performed. Evidence was subjected to critical appraisal using the Critical Appraisal Skills Programme tool and thematic analysis of the findings identified key issues.ResultsSurgical transposition appears to be a successful method of preserving ovarian function depending on the position of the ovaries outside of the radiation field, the age of the patient and the total dose received by the ovaries. There is limited modern evidence concerning its usage in relation to emerging techniques and technology. The use of IMRT is certainly widespread in the treatment of female pelvic cancers, however, there is no evidence supporting its use for reduction of ovarian dose. Several other studies have attempted to demonstrate new techniques to preserve ovarian function, but no functional outcome measures have reinforced their results.ConclusionsOvarian transposition has a proven track record for preservation of ovarian function, but the potential value of IMRT as a viable alternative to date remains unexplored. New work should be encouraged to determine the potential value of IMRT as a non-surgical alternative.</jats:sec
Evidence of bedform superimposition and flow unsteadiness in unit-bar deposits, South Saskatchewan River, Canada
Unit-bar deposits are ubiquitous components of river-channel deposits and strongly influence their hydrological properties, yet they are not easy to interpret. This paper concerns details of the internal structures of six unit bars from the South Saskatchewan River, Canada, that were investigated using trenches, epoxy resin peels, and 900 MHz ground-penetrating radar (GPR) profiles. The composition of unit bars depends on flow unsteadiness and superimposed bedforms. Flow unsteadiness causes changes in the mean grain size of the sediment in transport, but is expressed primarily as a change in the type and direction of migration of smaller ripple- and dune-scale bedforms superimposed on unit bars. Superimposed bedforms with heights that exceed 25% of the host bedform height reduce their host's slope and generate inclined sets. Host bedforms with smaller superimposed bedforms form angle-of-repose cross strata with a visible pre-sorting pattern. The relationship between the formative host- and superimposed bedforms and such pre-sorted cross strata can be used to interpret numerous aspects of the three-dimensional geometries of the bedforms. Such detailed interpretations rely on: (i) regularly spaced fine-grained drapes deposited during the passage of troughs of superimposed bedforms, (ii) grain-size sorting patterns generated by sorting within the superimposed bedforms before deposition, (iii) grain-size sorting during deposition by grainfall and intermittent grainflows down the bar lee-slope, and (iv) the presence and nature of low-angle reactivation surfaces.The detailed interpretations revealed that the deposits of dam-related floods were significantly smaller than the deposits of individual unit bars in this study. The unsteady flow and sediment transport conditions are reflected by changes in the structural composition of the unit bars. Reactivation surfaces associated with flow unsteadiness, as opposed to those formed by large superimposed bedforms, were characterized by changes in mean grain size, the buildup of sediment at the base of the bar lee slope, and changes in structures formed by superimposed bedforms. Reactivation surfaces generated by large superimposed bedforms indicate that bedform preservation is likely increased in areas of flow deceleration. The trough deposits of exposed unit bars contained bubble sand, planar laminae due to upper-stage plane beds, and low-angle inclined laminae due to antidunes. These structures indicate that unit-bar troughs can act as ephemeral channels. The composition of the investigated unit bars thus emphasizes the interplay between flow unsteadiness and bed morphology in the formation of sedimentary structures in river channels.Sediment surfaces generate visible GPR reflections where the thickness and contrast in electrical properties of the sediment layers are sufficiently large. Most cross-stratified sets were represented only by reflections from the base of the set, and not by high-angle inclined reflections from the cross strata. The local absence of reflections from cross strata is attributed to the lack of contrast in electrical properties of the well-sorted cross strata and their limited thickness relative to the radar wavelength. In contrast to cross strata, reactivation surfaces formed by large superimposed bedforms and flow unsteadiness were commonly associated with distinct inclined reflections
Temporal HeartNet: Towards Human-Level Automatic Analysis of Fetal Cardiac Screening Video
We present an automatic method to describe clinically useful information
about scanning, and to guide image interpretation in ultrasound (US) videos of
the fetal heart. Our method is able to jointly predict the visibility, viewing
plane, location and orientation of the fetal heart at the frame level. The
contributions of the paper are three-fold: (i) a convolutional neural network
architecture is developed for a multi-task prediction, which is computed by
sliding a 3x3 window spatially through convolutional maps. (ii) an anchor
mechanism and Intersection over Union (IoU) loss are applied for improving
localization accuracy. (iii) a recurrent architecture is designed to
recursively compute regional convolutional features temporally over sequential
frames, allowing each prediction to be conditioned on the whole video. This
results in a spatial-temporal model that precisely describes detailed heart
parameters in challenging US videos. We report results on a real-world clinical
dataset, where our method achieves performance on par with expert annotations.Comment: To appear in MICCAI, 201
Crafting an efficient bundle of property rights to determine the suitability of a Public-Private Partnership: A new theoretical framework
A Public–Private Partnership (PPP) procurement mode is poised to play a leading role in delivering global infrastructure. However, there is no fundamental microeconomic framework to determine whether a project or part/s of a project is a suitable PPP. This paper presents the development of a new theoretical framework that overarches and harnesses the application and integration of prominent microeconomic theories, namely, transaction cost and resource-based theories, property rights theory and principal-agent theory, to explain how an efficient bundle of property rights, associated with externalised project activities, is configured or crafted. This novel framework is developed to contribute significantly to advancing the rigour and transparency of PPP selection, as well as advancing theory of the firm. In turn, this change in current PPP thinking would appreciably increase the prospect of PPPs efficiently addressing the substantial appetite for this mode of procurement
Solar wind data from the MIT plasma experiments on Pioneer 6 and Pioneer 7
Hourly averages are presented of solar wind proton parameters obtained from experiments on the Pioneer 6 and Pioneer 7 spacecraft during the period December 16, 1965 to August 1971. The number of data points available on a given day depends upon the spacecraft-earth distance, the telemetry bit rate, and the ground tracking time allotted to each spacecraft. Thus, the data obtained earlier in the life of each spacecraft are more complete. The solar wind parameters are given in the form of plots and listings. Trajectory information is also given along with a detailed description of the analysis procedures used to extract plasma parameters from the measured data
Temperature determination via STJ optical spectroscopy
ESA's Superconducting Tunnel Junction (STJ) optical photon-counting camera
(S-Cam2) incorporates an array of pixels with intrinsic energy sensitivity.
Using the spectral fitting technique common in X-ray astronomy, we fit black
bodies to nine stellar spectra, ranging from cool flare stars to hot white
dwarfs. The measured temperatures are consistent with literature values at the
expected level of accuracy based on the predicted gain stability of the
instrument. Having also demonstrated that systematic effects due to count rate
are likely to be small, we then proceed to apply the temperature determination
method to four cataclysmic variable (CV) binary systems. In three cases we
measure the temperature of the accretion stream, while in the fourth we measure
the temperature of the white dwarf. The results are discussed in the context of
existing CV results. We conclude by outlining the prospects for future versions
of S-Cam.Comment: 9 pages, 9 figures (11 files); uses aa.cls; accepted for publication
in A&
- …