56 research outputs found

    Respiratory Paradoxical Adverse Drug Reactions Associated with Acetylcysteine and Carbocysteine Systemic Use in Paediatric Patients: A National Survey

    Get PDF
    OBJECTIVE: To report pediatric cases of paradoxical respiratory adverse drug reactions (ADRs) after exposure to oral mucolytic drugs (carbocysteine, acetylcysteine) that led to the withdrawal of licenses for these drugs for infants in France and then Italy. DESIGN: The study followed the recommendations of the European guidelines of pharmacovigilance for medicines used in the paediatric population. SETTING: Cases voluntarily reported by physicians from 1989 to 2008 were identified in the national French pharmacovigilance public database and in drug company databases. PATIENTS: The definition of paradoxical respiratory ADRs was based on the literature. Exposure to mucolytic drugs was arbitrarily defined as having received mucolytic drugs for at least 2 days (>200 mg) and at least until the day before the first signs of the suspected ADR. RESULTS: The non-exclusive paradoxical respiratory ADRs reported in 59 paediatric patients (median age 5 months, range 3 weeks to 34 months, 98% younger than 2 years old) were increased bronchorrhea or mucus vomiting (n = 27), worsening of respiratory distress during respiratory tract infection (n = 35), dyspnoea (n = 18), cough aggravation or prolongation (n = 11), and bronchospasm (n = 1). Fifty-one (86%) children required hospitalization or extended hospitalization because of the ADR; one patient died of pulmonary oedema after mucus vomiting. CONCLUSION: Parents, physicians, pharmacists, and drug regulatory agencies should know that the benefit risk ratio of mucolytic drugs is at least null and most probably negative in infants according to available evidence

    Long term human primary hepatocyte cultures in a microfluidic liver biochip show maintenance of mRNA levels and higher drugs metabolisms when compared to Petri cultures.

    No full text
    International audienceHuman primary hepatocytes were cultivated in a microfluidic bioreactor and in Petri dishes for 13 days. mRNA kinetics in biochips showed an increase in the levels of CYP2B6, CYP2C19, CYP2C8, CYP3A4, CYP1A2, CYP2D6, HNF4a, SULT1A1, UGT1A1 mRNA related genes when compared with post extraction levels. In addition, comparison with Petri dishes showed higher levels of CYP2B6, CYP2C19, CYP2C8, CYP3A4, CYP1A2, CYP2D6 related genes at the end of culture. Functional assays illustrated a higher urea and albumin production over the period of culture in biochips. Bioreactor drug metabolism (midazolam and phenacetin) was not superior to the Petri dish after 2 days of culture. The CYP3A4 midazolam metabolism was maintained in biochips after 13 days of culture, whereas it was almost undetectable in Petri dishes. This led to a 5000-fold higher value of the metabolic ratio in the biochips. CYP1A2 phenacetin metabolism was found to be higher in biochips after 5, 9 and 13 days of culture. Thus, a 100-fold higher metabolic ratio of APAP in biochips was measured after 13 days of perfusion. These results demonstrated functional primary human hepatocyte culture in the bioreactor in a long-term culture
    • …
    corecore