21 research outputs found

    Technical reference for hydrogen compatibility of materials.

    Full text link
    Abstract Not Provide

    Hydrogen Embrittlement of Structural Steels

    No full text
    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines; however, it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittlement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a well-established failure mode for steel hydrogen containment structures subjected to pressure cycling. This pressure cycling represents one of the key differences in operating conditions between current hydrogen pipelines and those anticipated in a hydrogen delivery infrastructure. Applying structural integrity models in design codes coupled with measurement of relevant material properties allows quantification of the reliability/integrity of steel hydrogen pipelines subjected to pressure cycling. Furthermore, application of these structural integrity models is aided by the development of physics-based predictive models, which provide important insights such as the effects of microstructure on hydrogen-assisted fatigue crack growth. Successful implementation of these structural integrity and physics-based models enhances confidence in the designmore » codes and enables decisions about materials selection and operating conditions for reliable and efficient steel hydrogen pipelines.« l

    Hydrogen Effects on Fatigue Crack Growth Rates in Pipeline Steel Welds

    No full text
    Fatigue crack growth rate (da/dN) versus stress intensity factor range (ΔK) relationships were measured for various grades of pipeline steel along with their respective welds in high pressure hydrogen. Tests were conducted in both 21 MPa hydrogen gas and a reference environment (e.g. air) at room temperature. Girth welds fabricated by arc welding and friction stir welding processes were examined in X65 and X52 pipeline grades, respectively. Results showed accelerated fatigue crack growth rates for all tests in hydrogen as compared to tests in air. Modestly higher hydrogen-assisted crack growth rates were observed in the welds as compared to their respective base metals. The arc weld and friction stir weld exhibited similar fatigue crack growth behavior suggesting similar sensitivity to hydrogen. A detailed study of microstructure and fractography was performed to identify relationships between microstructure constituents and hydrogen accelerated fatigue crack growth

    Fracture and Fatigue of Commercial Grade API Pipeline Steels in Gaseous Hydrogen

    No full text
    Gaseous hydrogen is an alternative to petroleum-based fuels, but it is known to significantly reduce the fatigue and fracture resistance of steels. Steels are commonly used for containment and distribution of gaseous hydrogen, albeit under conservative operating conditions (i.e., large safety factors) to mitigate so-called gaseous hydrogen embrittlement. Economical methods of distributing gaseous hydrogen (such as using existing pipeline infrastructure) are necessary to make hydrogen fuel competitive with alternatives. The effects of gaseous hydrogen on fracture resistance and fatigue resistance of pipeline steels, however, has not been comprehensively evaluated and this data is necessary for structural integrity assessment in gaseous hydrogen environments. In addition, existing standardized test methods for environment assisted cracking under sustained load appear to be inadequate to characterize low-strength steels (such as pipeline steels) exposed to relevant gaseous hydrogen environments. In this study, the principles of fracture mechanics are used to compare the fracture and fatigue performance of two pipeline steels in high-purity gaseous hydrogen at two pressures: 5.5 MPa and 21 MPa. In particular, elastic-plastic fracture toughness and fatigue crack growth rates were measured using the compact tension geometry and a pressure vessel designed for testing materials while exposed to gaseous hydrogen.Copyright © 2010 by ASM
    corecore