73 research outputs found
Immunohistochemical expression of mitochondrial membrane complexes (MMCs) I, III, IV and V in malignant and benign periampullary epithelium: a potential target for drug therapy of periampullary cancer?
<p>Abstract</p> <p>Background</p> <p>Mitochondrial membrane complexes (MMCs) are key mediators of cellular oxidative phosphorylation, and inhibiting them could lead to cell death. No published data are available on the relative abundance of MMCs in different periampullary cancers. Therefore, we studied the expression profile of MMCs I, III, IV and V in periampullary cancers, reactive pancreatitis, normal pancreas and chronic pancreatitis.</p> <p>Methods</p> <p>This was a retrospective study on tissue microarrays constructed from formalin-fixed paraffin-embedded tissue from 126 consecutive patients (cancer = 104, chronic pancreatitis = 22) undergoing pancreatic resections between June 2001 and June 2006. 78 specimens of chronic pancreatitis tissue were obtained adjacent to areas of cancer. Normal pancreatic tissue was obtained from the resection specimens in a total of 30 patients. Metastatic tumours in 61 regional lymph nodes from 61 patients were also studied.</p> <p>Results</p> <p>MMCs I, III, IV and V were highly expressed (p < 0.05) in all primary periampullary cancers compared with metastatic lymph nodes and adjacent benign pancreas. MMCs III, IV and V were highly expressed in all cancers regardless of type compared with chronic pancreatitis (p < 0.05). Higher expression of MMCs I and V was associated with better survival and may, in part, relate to lower expression of these MMCs in poorly differentiated tumours compared with well and moderately differentiated tumours.</p> <p>Conclusions</p> <p>Differential expression of MMCs III, IV and V in primary periampullary cancers compared with adjacent benign periampullary tissue and chronic pancreatitis is a novel finding, which may render them attractive anticancer targets.</p
H I - MaNGA : H I follow-up for the MaNGA survey
We present the H I-MaNGA programme of H I follow-up for the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. MaNGA, which is part of the Fourth phase of the Sloan Digital Sky Surveys, is in the process of obtaining integral field unit spectroscopy for a sample of ∼10 000 nearby galaxies. We give an overview of the H I 21cm radio follow-up observing plans and progress and present data for the first 331 galaxies observed in the 2016 observing season at the Robert C. Bryd Green Bank Telescope. We also provide a cross-match of the current MaNGA(DR15) sample with publicly available H I data from the Arecibo Legacy Fast Arecibo L-band Feed Array survey. The addition of H I data to the MaNGA data set will strengthen the survey's ability to address several of its key science goals that relate to the gas content of galaxies, while also increasing the legacy of this survey for all extragalactic science.Publisher PDFPeer reviewe
Understanding the circumgalactic medium is critical for understanding galaxy evolution
Galaxies evolve under the influence of gas flows between their interstellar
medium and their surrounding gaseous halos known as the circumgalactic medium
(CGM). The CGM is a major reservoir of galactic baryons and metals, and plays a
key role in the long cycles of accretion, feedback, and recycling of gas that
drive star formation. In order to fully understand the physical processes at
work within galaxies, it is therefore essential to have a firm understanding of
the composition, structure, kinematics, thermodynamics, and evolution of the
CGM. In this white paper we outline connections between the CGM and galactic
star formation histories, internal kinematics, chemical evolution, quenching,
satellite evolution, dark matter halo occupation, and the reionization of the
larger-scale intergalactic medium in light of the advances that will be made on
these topics in the 2020s. We argue that, in the next decade, fundamental
progress on all of these major issues depends critically on improved empirical
characterization and theoretical understanding of the CGM. In particular, we
discuss how future advances in spatially-resolved CGM observations at high
spectral resolution, broader characterization of the CGM across galaxy mass and
redshift, and expected breakthroughs in cosmological hydrodynamic simulations
will help resolve these major problems in galaxy evolution.Comment: Astro2020 Decadal Science White Pape
Integrated Personal Health Records: Transformative Tools for Consumer-Centric Care
<p>Abstract</p> <p>Background</p> <p>Integrated personal health records (PHRs) offer significant potential to stimulate transformational changes in health care delivery and self-care by patients. In 2006, an invitational roundtable sponsored by Kaiser Permanente Institute, the American Medical Informatics Association, and the Agency for Healthcare Research and Quality was held to identify the transformative potential of PHRs, as well as barriers to realizing this potential and a framework for action to move them closer to the health care mainstream. This paper highlights and builds on the insights shared during the roundtable.</p> <p>Discussion</p> <p>While there is a spectrum of dominant PHR models, (standalone, tethered, integrated), the authors state that only the integrated model has true transformative potential to strengthen consumers' ability to manage their own health care. Integrated PHRs improve the quality, completeness, depth, and accessibility of health information provided by patients; enable facile communication between patients and providers; provide access to health knowledge for patients; ensure portability of medical records and other personal health information; and incorporate auto-population of content. Numerous factors impede widespread adoption of integrated PHRs: obstacles in the health care system/culture; issues of consumer confidence and trust; lack of technical standards for interoperability; lack of HIT infrastructure; the digital divide; uncertain value realization/ROI; and uncertain market demand. Recent efforts have led to progress on standards for integrated PHRs, and government agencies and private companies are offering different models to consumers, but substantial obstacles remain to be addressed. Immediate steps to advance integrated PHRs should include sharing existing knowledge and expanding knowledge about them, building on existing efforts, and continuing dialogue among public and private sector stakeholders.</p> <p>Summary</p> <p>Integrated PHRs promote active, ongoing patient collaboration in care delivery and decision making. With some exceptions, however, the integrated PHR model is still a theoretical framework for consumer-centric health care. The authors pose questions that need to be answered so that the field can move forward to realize the potential of integrated PHRs. How can integrated PHRs be moved from concept to practical application? Would a coordinating body expedite this progress? How can existing initiatives and policy levers serve as catalysts to advance integrated PHRs?</p
CATMoS: Collaborative Acute Toxicity Modeling Suite.
BACKGROUND: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests. In silico models built using existing data facilitate rapid acute toxicity predictions without using animals. OBJECTIVES: The U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Acute Toxicity Workgroup organized an international collaboration to develop in silico models for predicting acute oral toxicity based on five different end points: Lethal Dose 50 (LD50 value, U.S. Environmental Protection Agency hazard (four) categories, Globally Harmonized System for Classification and Labeling hazard (five) categories, very toxic chemicals [LD50 (LD50≤50mg/kg)], and nontoxic chemicals (LD50>2,000mg/kg). METHODS: An acute oral toxicity data inventory for 11,992 chemicals was compiled, split into training and evaluation sets, and made available to 35 participating international research groups that submitted a total of 139 predictive models. Predictions that fell within the applicability domains of the submitted models were evaluated using external validation sets. These were then combined into consensus models to leverage strengths of individual approaches. RESULTS: The resulting consensus predictions, which leverage the collective strengths of each individual model, form the Collaborative Acute Toxicity Modeling Suite (CATMoS). CATMoS demonstrated high performance in terms of accuracy and robustness when compared with in vivo results. DISCUSSION: CATMoS is being evaluated by regulatory agencies for its utility and applicability as a potential replacement for in vivo rat acute oral toxicity studies. CATMoS predictions for more than 800,000 chemicals have been made available via the National Toxicology Program's Integrated Chemical Environment tools and data sets (ice.ntp.niehs.nih.gov). The models are also implemented in a free, standalone, open-source tool, OPERA, which allows predictions of new and untested chemicals to be made. https://doi.org/10.1289/EHP8495
The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Recommended from our members
The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data
- …