120 research outputs found

    A Small-Gain Theorem with Applications to Input/Output Systems, Incremental Stability, Detectability, and Interconnections

    Full text link
    A general ISS-type small-gain result is presented. It specializes to a small-gain theorem for ISS operators, and it also recovers the classical statement for ISS systems in state-space form. In addition, we highlight applications to incrementally stable systems, detectable systems, and to interconnections of stable systems.Comment: 16 pages, no figure

    Deterministic characterization of stochastic genetic circuits

    Full text link
    For cellular biochemical reaction systems where the numbers of molecules is small, significant noise is associated with chemical reaction events. This molecular noise can give rise to behavior that is very different from the predictions of deterministic rate equation models. Unfortunately, there are few analytic methods for examining the qualitative behavior of stochastic systems. Here we describe such a method that extends deterministic analysis to include leading-order corrections due to the molecular noise. The method allows the steady-state behavior of the stochastic model to be easily computed, facilitates the mapping of stability phase diagrams that include stochastic effects and reveals how model parameters affect noise susceptibility, in a manner not accessible to numerical simulation. By way of illustration we consider two genetic circuits: a bistable positive-feedback loop and a negative-feedback oscillator. We find in the positive feedback circuit that translational activation leads to a far more stable system than transcriptional control. Conversely, in a negative-feedback loop triggered by a positive-feedback switch, the stochasticity of transcriptional control is harnessed to generate reproducible oscillations.Comment: 6 pages (Supplementary Information is appended

    Optimal metabolic pathway activation

    Get PDF
    This paper deals with temporal enzyme distribution in the activation of biochemical pathways. Pathway activation arises when production of a certain biomolecule is required due to changing environmental conditions. Under the premise that biological systems have been optimized through evolutionary processes, a biologically meaningful optimal control problem is posed. In this setup, the enzyme concentrations are assumed to be time dependent and constrained by a limited overall enzyme production capacity, while the optimization criterion accounts for both time and resource usage. Using geometric arguments we establish the bang-bang nature of the solution and reveal that each reaction must be sequentially activated in the same order as they appear in the pathway. The results hold for a broad range of enzyme dynamics which includes, but is not limited to, Mass Action, Michaelis-Menten and Hill Equation kinetics.Comment: 14 pages, 3 figures. Paper to be presented at the 17th IFAC World Congress, Seoul, Korea, July 200
    • …
    corecore