28 research outputs found

    A protocol to induce systemic autophagy and increase energy metabolism in mice using PEGylated arginine deiminase

    Get PDF
    Obesity is a prevalent metabolic disorder worldwide. Here, we describe a comprehensive protocol using pegylated arginine deiminase (ADI-EPG 20) to apply the concept that arginine depletion induces systemic autophagy to drive whole-body energy metabolism and weight loss in mice. We detail the steps for cohort setup, mouse husbandry, and treatment and provide expected results under these conditions. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022a, 2022b)

    Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9

    Get PDF
    Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricemia contributes to development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. Additionally, how uric acid is cleared from the circulation is incompletely understood. Here, we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricemia, hyperuricosuria, spontaneous hypertension, dyslipidemia, and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolemia. These data provide evidence that hyperuricemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome

    Pegylated arginine deiminase drives arginine turnover and systemic autophagy to dictate energy metabolism

    Get PDF
    Obesity is a multi-systemic disorder of energy balance. Despite intense investigation, the determinants of energy homeostasis remain incompletely understood, and efficacious treatments against obesity and its complications are lacking. Here, we demonstrate that conferred arginine iminohydrolysis by the bacterial virulence factor and arginine deiminase

    SIRT1 selectively exerts the metabolic protective effects of hepatocyte nicotinamide phosphoribosyltransferase

    Get PDF
    Calorie restriction abates aging and cardiometabolic disease by activating metabolic signaling pathways, including nicotinamide adenine dinucleotide (NA

    SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy

    Get PDF
    Trehalose is a disaccharide demonstrated to mitigate disease burden in multiple murine neurodegenerative models. We recently revealed that trehalose rapidly induces hepatic autophagy and abrogates hepatic steatosis by inhibiting hexose transport via the SLC2A family of facilitative transporters. Prior studies, however, postulate that intracellular trehalose is sufficient to induce cellular autophagy. The objective of the current study was to identify the means by which trehalose accesses the hepatocyte cytoplasm, and define the distal signaling mechanisms by which trehalose induces autophagy. We provide gas chromatographic/mass spectrometric, fluorescence microscopic and radiolabeled uptake evidence that trehalose traverses the plasma membrane via SLC2A8 (GLUT8), a homolog of the trehalose transporter-1 (Tret1). Moreover, GLUT8-deficient hepatocytes and GLUT8-deficient mice exposed to trehalose resisted trehalose-induced AMP-activated protein kinase (AMPK) phosphorylation and autophagic induction in vitro and in vivo. Although trehalose profoundly attenuated mTORC1 signaling, trehalose-induced mTORC1 suppression was insufficient to activate autophagy in the absence of AMPK or GLUT8. Strikingly, transient, heterologous Tret1 overexpression reconstituted autophagic flux and AMPK signaling defects in GLUT8-deficient hepatocyte cultures. Together, these data suggest that cytoplasmic trehalose access is carrier-mediated, and that GLUT8 is a mammalian trehalose transporter required for hepatocyte trehalose-induced autophagy and signal transduction

    The tetraspanin transmembrane protein CD53 mediates dyslipidemia and integrates inflammatory and metabolic signaling in hepatocytes

    Get PDF
    Tetraspanins are transmembrane signaling and proinflammatory proteins. Prior work demonstrates that the tetraspanin, CD53/TSPAN25/MOX44, mediates B-cell development and lymphocyte migration to lymph nodes and is implicated in various inflammatory diseases. However, CD53 is also expressed in highly metabolic tissues, including adipose and liver; yet its function outside the lymphoid compartment is not defined. Here, we show that CD53 demarcates the nutritional and inflammatory status of hepatocytes. High-fat exposure and inflammatory stimuli induced CD53 in vivo in liver and isolated primary hepatocytes. In contrast, restricting hepatocyte glucose flux through hepatocyte glucose transporter 8 deletion or through trehalose treatment blocked CD53 induction in fat- and fructose-exposed contexts. Furthermore, germline CD53 deletion in vivo blocked Western diet-induced dyslipidemia and hepatic inflammatory transcriptomic activation. Surprisingly, metabolic protection in CD53 KO mice was more pronounced in the presence of an inciting inflammatory event. CD53 deletion attenuated tumor necrosis factor alpha-induced and fatty acid + lipopolysaccharide-induced cytokine gene expression and hepatocyte triglyceride accumulation in isolated murine hepatocytes. In vivo, CD53 deletion in nonalcoholic steatohepatitis diet-fed mice blocked peripheral adipose accumulation and adipose inflammation, insulin tolerance, and liver lipid accumulation. We then defined a stabilized and trehalase-resistant trehalose polymer that blocks hepatocyte CD53 expression in basal and over-fed contexts. The data suggest that CD53 integrates inflammatory and metabolic signals in response to hepatocyte nutritional status and that CD53 blockade may provide a means by which to attenuate pathophysiology in diseases that integrate overnutrition and inflammation, such as nonalcoholic steatohepatitis and type 2 diabetes

    Maternal fructose diet-induced developmental programming

    Get PDF
    Developmental programming of chronic diseases by perinatal exposures/events is the basic tenet of the developmental origins hypothesis of adult disease (DOHaD). With consumption of fructose becoming more common in the diet, the effect of fructose exposure during pregnancy and lactation is of increasing relevance. Human studies have identified a clear effect of fructose consumption on maternal health, but little is known of the direct or indirect effects on offspring. Animal models have been utilized to evaluate this concept and an association between maternal fructose and offspring chronic disease, including hypertension and metabolic syndrome. This review will address the mechanisms of developmental programming by maternal fructose and potential options for intervention

    Microbial and metabolic impacts of trehalose and trehalose analogues

    No full text
    Trehalose is a disaccharide and fasting-mimetic that has been both canonized and vilified for its putative cardiometabolic and microbial effects. Trehalose analogues are currently under development to extend the key metabolic therapeutic actions of trehalose without adversely affecting host microbial communities. In the current study, we contrast the extent to which trehalose and its degradation-resistant analogue, lactotrehalose (LT), modulate microbial communities and host transcriptomic profiles. We demonstrate that trehalose and LT each exert adaptive metabolic and microbial effects that both overlap and diverge. We postulate that these effects depend both upon compound stability and bioavailability, and on stereospecific signal transduction. In context, the data suggest that trehalose is unlikely to be harmful, and yet it harbors unique effects that are not yet fully replicated by its analogues. These compounds are thus valuable probes to better define trehalose structure-function, and to offer as therapeutic metabolic agents
    corecore