102 research outputs found
Status and trends of wetland studies in Canada using remote sensing technology with a focus on wetland classification: a bibliographic analysis
A large portion of Canada is covered by wetlands; mapping and monitoring them is of great importance for various applications. In this regard, Remote Sensing (RS) technology has been widely employed for wetland studies in Canada over the past 45 years. This study evaluates meta-data to investigate the status and trends of wetland studies in Canada using RS technology by reviewing the scientific papers published between 1976 and the end of 2020 (300 papers in total). Initially, a meta-analysis was conducted to analyze the status of RS-based wetland studies in terms of the wetland classification systems, methods, classes, RS data usage, publication details (e.g., authors, keywords, citations, and publications time), geographic information, and level of classification accuracies. The deep systematic review of 128 peer-reviewed articles illustrated the rising trend in using multi-source RS datasets along with advanced machine learning algorithms for wetland mapping in Canada. It was also observed that most of the studies were implemented over the province of Ontario. Pixel-based supervised classifiers were the most popular wetland classification algorithms. This review summarizes different RS systems and methodologies for wetland mapping in Canada to outline how RS has been utilized for the generation of wetland inventories. The results of this review paper provide the current state-of-the-art methods and datasets for wetland studies in Canada and will provide direction for future wetland mapping research.Peer ReviewedPostprint (published version
Wetland Monitoring and Mapping Using Synthetic Aperture Radar
Wetlands are critical for ensuring healthy aquatic systems, preventing soil erosion, and securing groundwater reservoirs. Also, they provide habitat for many animal and plant species. Thus, the continuous monitoring and mapping of wetlands is necessary for observing effects of climate change and ensuring a healthy environment. Synthetic Aperture Radar (SAR) remote sensing satellites are active remote sensing instruments essential for monitoring wetlands, given the possibility to bypass the cloud-sensitive optical instruments and obtain satellite imagery day and night. Therefore, the purpose of this chapter is to provide an overview of the basic concepts of SAR remote sensing technology and its applications for wetland monitoring and mapping. Emphasis is given to SAR systems with full and compact polarimetric SAR capabilities. Brief discussions on the latest state-of-the-art wetland applications using SAR imagery are presented. Also, we summarize the current trends in wetland monitoring and mapping using SAR imagery. This chapter provides a good introduction to interested readers with limited background in SAR technology and its possible wetland applications
Remote-Sensing Monitoring of Tide Propagation Through Coastal Wetlands
Tide propagation through coastal wetlands is a complex phenomenon affected by vegetation, channels, and tidal conditions. Generally, tidal flow is studied using stage (water level) observations, which provide good temporal resolution, but they are acquired in limited locations. Here, a remote-sensing technique, wetland InSAR (interferometric synthetic aperture radar), is used to detect tidal flow in vegetated coastal environments over broad spatial scales. The technique is applied to data sets acquired by three radar satellites over the western Everglades in south Florida. Interferometric analysis of the data shows that the greatest water-level changes occur along tidal channels, reflecting a high velocity gradient between fast horizontal flow in the channel and the slow flow propagation through the vegetation. The high-resolution observations indicate that the tidal flushing zone extends 2–3 km on both sides of tidal channels and can extend 3–4 km inland from the end of the channel. The InSAR observations can also serve as quantitative constraints for detailed coastal wetland flow models
Automatic Relative Radiometric Normalization of Bi-Temporal Satellite Images Using a Coarse-to-Fine Pseudo-Invariant Features Selection and Fuzzy Integral Fusion Strategies
Relative radiometric normalization (RRN) is important for pre-processing and analyzing multitemporal remote sensing (RS) images. Multitemporal RS images usually include different land use/land cover (LULC) types; therefore, considering an identical linear relationship during RRN modeling may result in potential errors in the RRN results. To resolve this issue, we proposed a new automatic RRN technique that efficiently selects the clustered pseudo-invariant features (PIFs) through a coarse-to-fine strategy and uses them in a fusion-based RRN modeling approach. In the coarse stage, an efficient difference index was first generated from the down-sampled reference and target images by combining the spectral correlation, spectral angle mapper (SAM), and Chebyshev distance. This index was then categorized into three groups of changed, unchanged, and uncertain classes using a fast multiple thresholding technique. In the fine stage, the subject image was first segmented into different clusters by the histogram-based fuzzy c-means (HFCM) algorithm. The optimal PIFs were then selected from unchanged and uncertain regions using each cluster’s bivariate joint distribution analysis. In the RRN modeling step, two normalized subject images were first produced using the robust linear regression (RLR) and cluster-wise-RLR (CRLR) methods based on the clustered PIFs. Finally, the normalized images were fused using the Choquet fuzzy integral fusion strategy for overwhelming the discontinuity between clusters in the final results and keeping the radiometric rectification optimal. Several experiments were implemented on four different bi-temporal satellite images and a simulated dataset to demonstrate the efficiency of the proposed method. The results showed that the proposed method yielded superior RRN results and outperformed other considered well-known RRN algorithms in terms of both accuracy level and execution time.publishedVersio
The third generation of pan-canadian wetland map at 10 m resolution using multisource earth observation data on cloud computing platform
Development of the Canadian Wetland Inventory Map (CWIM) has thus far proceeded over two generations, reporting the extent and location of bog, fen, swamp, marsh, and water wetlands across the country with increasing accuracy. Each generation of this training inventory has improved the previous results by including additional reference wetland data and focusing on processing at the scale of ecozone, which represent ecologically distinct regions of Canada. The first and second generations attained relatively highly accurate results with an average approaching 86% though some overestimated wetland extents, particularly of the swamp class. The current research represents a third refinement of the inventory map. It was designed to improve the overall accuracy (OA) and reduce wetlands overestimation by modifying test and train data and integrating additional environmental and remote sensing datasets, including countrywide coverage of L-band ALOS PALSAR-2, SRTM, and Arctic digital elevation model, nighttime light, temperature, and precipitation data. Using a random forest classification within Google Earth Engine, the average OA obtained for the CWIM3 is 90.53%, an improvement of 4.77% over previous results. All ecozones experienced an OA increase of 2% or greater and individual ecozone OA results range between 94% at the highest to 84% at the lowest. Visual inspection of the classification products demonstrates a reduction of wetland area overestimation compared to previous inventory generations. In this study, several classification scenarios were defined to assess the effect of preprocessing and the benefits of incorporating multisource data for large-scale wetland mapping. In addition, the development of a confidence map helps visualize where current results are most and least reliable given the amount of wetland test and train data and the extent of recent landscape disturbance (e.g., fire). The resulting OAs and wetland areal extent reveal the importance of multisource data and adequate test and train data for wetland classification at a countrywide scale
A Collection of Novel Algorithms for Wetland Classification with SAR and Optical Data
Wetlands are valuable natural resources that provide many benefits to the environment, and thus, mapping wetlands is crucially important. We have developed land cover and wetland classification algorithms that have general applicability to different geographical locations. We also want a high level of classification accuracy (i.e., more than 90%). Over that past 2Â years, we have been developing an operational wetland classification approach aimed at a Newfoundland/Labrador province-wide wetland inventory. We have developed and published several algorithms to classify wetlands using multi-source data (i.e., polarimetric SAR and multi-spectral optical imagery), object-based image analysis, and advanced machine-learning tools. The algorithms have been tested and verified on many large pilot sites across the province and provided overall and class-based accuracies of about 90%. The developed methods have general applicability to other Canadian provinces (with field validation data) allowing the creation of a nation-wide wetland inventory system
Semi-automated surface water detection with synthetic aperture radar data: A wetland case study
In this study, a new method is proposed for semi-automated surface water detection using synthetic aperture radar data via a combination of radiometric thresholding and image segmentation based on the simple linear iterative clustering superpixel algorithm. Consistent intensity thresholds are selected by assessing the statistical distribution of backscatter values applied to the mean of each superpixel. Higher-order texture measures, such as variance, are used to improve accuracy by removing false positives via an additional thresholding process used to identify the boundaries of water bodies. Results applied to quad-polarized RADARSAT-2 data show that the threshold value for the variance texture measure can be approximated using a constant value for different scenes, and thus it can be used in a fully automated cleanup procedure. Compared to similar approaches, errors of omission and commission are improved with the proposed method. For example, we observed that a threshold-only approach consistently tends to underestimate the extent of water bodies compared to combined thresholding and segmentation, mainly due to the poor performance of the former at the edges of water bodies. The proposed method can be used for monitoring changes in surface water extent within wetlands or other areas, and while presented for use with radar data, it can also be used to detect surface water in optical images
Polarimetric Change Detection for Wetlands
An exciting development in wetland mapping and monitoring is the use of SAR polarimetry which uses both magnitude and phase of the backscattered radar signal for information extraction. This approach allows for the accurate delineation of flooded vegetation due to the double bounce scattering mechanism which the phase helps to identify unambiguously. Repeat pass polarimetric data is then used to monitor the temporal change in flooded vegetation. This information is useful for a variety of applications in wetland mapping and monitoring. This paper will present a novel Curvelet-based technique for the enhancement of polarimetric decomposition channels as well as temporal differences in these channels. Starting with the Freeman-Durden and the Cloude-Pottier polarimetric decomposition of Radarsat-2 data the Curvelet image enhancement and the Curvelet change detection are applied. The results are very promising although a validation by comparison with ground truth data still has to be done
Seasonal Change in Wetland Coherence as an Aid to Wetland Monitoring
Water is an essential natural resource, and information about surface water conditions can support a wide variety of applications, including urban planning, agronomy, hydrology, electrical power generation, disaster relief, ecology and preservation of natural areas. Synthetic Aperture Radar (SAR) is recognized as an important source of data for monitoring surface water, especially under inclement weather conditions, and is used operationally for flood mapping applications. The canopy penetration capability of the microwaves also allows for mapping of flooded vegetation as a result of enhanced backscatter from what is generally believed to be a double-bounce scattering mechanism between the water and emergent vegetation. Recent investigations have shown that, under certain conditions, the SAR response signal from flooded vegetation may remain coherent during repeat satellite over-passes, which can be exploited for interferometric SAR (InSAR) measurements to estimate changes in water levels and water topography. InSAR results also suggest that coherence change detection (CCD) might be applied to wetland monitoring applications. This study examines wetland vegetation characteristics that lead to coherence in RADARSAT-2 InSAR data of an area in eastern Canada with many small wetlands, and determines the annual variation in the coherence of these wetlands using multi-temporal radar data. The results for a three-year period demonstrate that most swamps and marshes maintain coherence throughout the ice-/snow-free time period for the 24-day repeat cycle of RADARSAT-2. However, open water areas without emergent aquatic vegetation generally do not have suitable coherence for CCD or InSAR water level estimation. We have found that wetlands with tree cover exhibit the highest coherence and the least variance; wetlands with herbaceous cover exhibit high coherence, but also high variability of coherence; and wetlands with shrub cover exhibit high coherence, but variability intermediate between treed and herbaceous wetlands. From this knowledge, we have developed a novel image product that combines information about the magnitude of coherence and its variability with radar brightness (backscatter intensity). This product clearly displays the multitude of small wetlands over a wide area. With an interpretation key we have also developed, it is possible to distinguish different wetland types and assess year-to-year changes. In the next few years, satellite SAR systems, such as the European Sentinel and the Canadian RADARSAT Constellation Mission (RCM), will provide rapid revisit capabilities and standard data collection modes, enhancing the operational application of SAR data for assessing wetland conditions and monitoring water levels using InSAR techniques
- …