14,610 research outputs found
A Palladium-Catalyzed Vinylcyclopropane (3 + 2) Cycloaddition Approach to the Melodinus Alkaloids
A palladium-catalyzed (3 + 2) cycloaddition of a vinylcyclopropane and a β-nitrostyrene is employed to rapidly assemble the cyclopentane core of the Melodinus alkaloids. The ABCD ring system of the natural product family is prepared in six steps from commercially available materials
Constant-temperature molecular-dynamics algorithms for mixed hard-core/continuous potentials
We present a set of second-order, time-reversible algorithms for the
isothermal (NVT) molecular-dynamics (MD) simulation of systems with mixed
hard-core/continuous potentials. The methods are generated by combining
real-time Nose' thermostats with our previously developed Collision Verlet
algorithm [Mol. Phys. 98, 309 (1999)] for constant energy MD simulation of such
systems. In all we present 5 methods, one based on the Nose'-Hoover [Phys. Rev.
A 31, 1695 (1985)] equations of motion and four based on the Nose'-Poincare'
[J.Comp.Phys., 151 114 (1999)] real-time formulation of Nose' dynamics. The
methods are tested using a system of hard spheres with attractive tails and all
correctly reproduce a canonical distribution of instantaneous temperature. The
Nose'-Hoover based method and two of the Nose'-Poincare' methods are shown to
have good energy conservation in long simulations.Comment: 9 pages, 5 figure
A simple variational method for calculating energy and quantum capacitance of an electron gas with screened interactions
We describe a variational procedure for calculating the energy of an electron
gas in which the long-range Coulomb interaction is truncated by the screening
effect of a nearby metallic gate. We use this procedure to compute the quantum
capacitance of the system as a function of electron density and spin
polarization. The accuracy of the method is verified against published
Monte-Carlo data. The results compare favorably with a recent experiment.Comment: 4 pages, 3 figure
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependency
Increased coupling between critical infrastructure networks, such as power
and communication systems, will have important implications for the reliability
and security of these systems. To understand the effects of power-communication
coupling, several have studied interdependent network models and reported that
increased coupling can increase system vulnerability. However, these results
come from models that have substantially different mechanisms of cascading,
relative to those found in actual power and communication networks. This paper
reports on two sets of experiments that compare the network vulnerability
implications resulting from simple topological models and models that more
accurately capture the dynamics of cascading in power systems. First, we
compare a simple model of topological contagion to a model of cascading in
power systems and find that the power grid shows a much higher level of
vulnerability, relative to the contagion model. Second, we compare a model of
topological cascades in coupled networks to three different physics-based
models of power grids coupled to communication networks. Again, the more
accurate models suggest very different conclusions. In all but the most extreme
case, the physics-based power grid models indicate that increased
power-communication coupling decreases vulnerability. This is opposite from
what one would conclude from the coupled topological model, in which zero
coupling is optimal. Finally, an extreme case in which communication failures
immediately cause grid failures, suggests that if systems are poorly designed,
increased coupling can be harmful. Together these results suggest design
strategies for reducing the risk of cascades in interdependent infrastructure
systems
full-FORCE: A Target-Based Method for Training Recurrent Networks
Trained recurrent networks are powerful tools for modeling dynamic neural
computations. We present a target-based method for modifying the full
connectivity matrix of a recurrent network to train it to perform tasks
involving temporally complex input/output transformations. The method
introduces a second network during training to provide suitable "target"
dynamics useful for performing the task. Because it exploits the full recurrent
connectivity, the method produces networks that perform tasks with fewer
neurons and greater noise robustness than traditional least-squares (FORCE)
approaches. In addition, we show how introducing additional input signals into
the target-generating network, which act as task hints, greatly extends the
range of tasks that can be learned and provides control over the complexity and
nature of the dynamics of the trained, task-performing network.Comment: 20 pages, 8 figure
Characterizing the dynamical importance of network nodes and links
The largest eigenvalue of the adjacency matrix of the networks is a key
quantity determining several important dynamical processes on complex networks.
Based on this fact, we present a quantitative, objective characterization of
the dynamical importance of network nodes and links in terms of their effect on
the largest eigenvalue. We show how our characterization of the dynamical
importance of nodes can be affected by degree-degree correlations and network
community structure. We discuss how our characterization can be used to
optimize techniques for controlling certain network dynamical processes and
apply our results to real networks.Comment: 4 pages, 4 figure
A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes
Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/ mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented
Actuopaleoichnology of a modern Bay of Fundy macro-tidal flat: Analogy with a Mississippian tidal flat deposit (Hartselle Sandstone) from Alabama
Copyright 2019 Zachos and Platt Trace fossil zonation in the Hartselle Sandstone of Mississippian age (Chesterian: Visean-Serpukhovian) exposed on Fielder Ridge, Alabama is compared with modern macro-tidal flat ichnocoenoses on the Bay of Fundy at Lubec, Maine, and demonstrated to be analogous by sedimentologic and ichnotaxonomic criteria. The modern flat has minimal influence from either waves or freshwater influx, and can be divided into five distinct ichnocoenoses, characterized by surface traces (epichnia) and four sedimentologic facies defined by gross grain texture or hydrodynamic characteristics, but lacking significant surface traces. Several characteristics of tidal flat deposits in a fetch-limited, marine (i.e., non-estuarine), meso- to macro-tidal regime can be used to recognize similar environments as old as the late Paleozoic. These criteria include (1) limited influence of wind and waves on the depositional environment, (2) lack of significant freshwater influence and therefore any persistent brackish environments, (3) a distinct spatial distribution of microenvironments defined by substrate and exposure period, (4) high diversity of epichnial traces directly associated with microenvironments across the tidal flat, (5) generally low degree of reworking of traces by bioturbation but high degree of reworking by tidal currents, and (6) preservation of traces of predation and scavenging behavior on an exposed surface. These features, together with the regional depositional pattern of the Hartselle Sandstone interpreted as tide-influenced bars and shoals, support a meso- to macro-tidal interpretation of the depositional environment
Varicocele: A Review
Varicoceles are relatively common clinical problem that are associated with pain, testicular atrophy, and reduced fertility rates. After a brief historical perspective is presented, this article reviews the anatomy, indications, treatment options, and potential complications related to varicoceles
- …