1,028 research outputs found
On the validity of the Boltzmann equation to describe low density granular systems
The departure of a granular gas in the instable region of parameters from the
initial homogeneous cooling state is studied. Results from Molecular Dynamics
and from Direct Monte Carlo simulation of the Boltzmann equation are compared.
It is shown that the Boltzmann equation accurately predicts the low density
limit of the system. The relevant role played by the parallelization of the
velocities as time proceeds and the dependence of this effect on the density is
analyzed in detail
Volume fluctuations and compressibility of a vibrated granular gas
The volume fluctuations in the steady state reached by a vibrated granular
gas of hard particles confined by a movable piston on the top are investigated
by means of event driven simulations. Also, a compressibility factor, measuring
the response in volume of the system to a change in the mass of the piston, is
introduced and measured. From the second moment of the volume fluctuations and
the compressibility factor, an effective temperature is defined, by using the
same relation as obeyed by equilibrium molecular systems. The interpretation of
this effective temperature and its relationship with the granular temperature
of the gas, and also with the velocity fluctuations of the movable piston, is
discussed. It is found that the ratio of the temperature based on the volume
fluctuations to the temperature based on the piston kinetic energy, obeys
simple dependencies on the inelasticity and on the piston-particle mass ratio
Instability of the symmetric Couette-flow in a granular gas: hydrodynamic field profiles and transport
We investigate the inelastic hard disk gas sheared by two parallel bumpy
walls (Couette-flow). In our molecular dynamic simulations we found a
sensitivity to the asymmetries of the initial condition of the particle places
and velocities and an asymmetric stationary state, where the deviation from
(anti)symmetric hydrodynamic fields is stronger as the normal restitution
coefficient decreases. For the better understanding of this sensitivity we
carried out a linear stability analysis of the former kinetic theoretical
solution [Jenkins and Richman: J. Fluid. Mech. {\bf 171} (1986)] and found it
to be unstable. The effect of this asymmetry on the self-diffusion coefficient
is also discussed.Comment: 9 pages RevTeX, 14 postscript figures, sent to Phys. Rev.
Steady state representation of the homogeneous cooling state of a granular gas
The properties of a dilute granular gas in the homogeneous cooling state are
mapped to those of a stationary state by means of a change in the time scale
that does not involve any internal property of the system. The new
representation is closely related with a general property of the granular
temperature in the long time limit. The physical and practical implications of
the mapping are discussed. In particular, simulation results obtained by the
direct simulation Monte Carlo method applied to the scaled dynamics are
reported. This includes ensemble averages and also the velocity autocorrelation
function, as well as the self-diffusion coefficient obtained from the latter by
means of the Green-Kubo representation. In all cases, the obtained results are
compared with theoretical predictions
Transport coefficients for dense hard-disk systems
A study of the transport coefficients of a system of elastic hard disks,
based on the use of Helfand-Einstein expressions is reported. The
self-diffusion, the viscosity, and the heat conductivity are examined with
averaging techniques especially appropriate for the use in event-driven
molecular dynamics algorithms with periodic boundary conditions. The density
and size dependence of the results is analyzed, and comparison with the
predictions from Enskog's theory is carried out. In particular, the behavior of
the transport coefficients in the vicinity of the fluid-solid transition is
investigated and a striking power law divergence of the viscosity in this
region is obtained, while all other examined transport coefficients show a drop
in that density range.Comment: submitted to PR
Piezoelectric mechanism of orientation of stripe structures in two-dimensional electron systems
A piezoelectric mechanism of orientation of stripes in two-dimensional
quantum Hall systems in GaAs heterostructures is considered. The anisotropy of
the elastic moduli and the boundary of the sample are taken into account. It is
found that in the average the stripes line up with the [110] axis. In double
layer systems the wave vector of the stripe structure rotates from the [110] to
[100] axis if the period of density modulation becomes large than the
interlayer distance. From the experimental point of view it means that in
double layer systems anisotropic part of resistivity changes its sign under
variation of the external magnetic field.Comment: 8 page
Navier-Stokes transport coefficients of -dimensional granular binary mixtures at low density
The Navier-Stokes transport coefficients for binary mixtures of smooth
inelastic hard disks or spheres under gravity are determined from the Boltzmann
kinetic theory by application of the Chapman-Enskog method for states near the
local homogeneous cooling state. It is shown that the Navier-Stokes transport
coefficients are not affected by the presence of gravity. As in the elastic
case, the transport coefficients of the mixture verify a set of coupled linear
integral equations that are approximately solved by using the leading terms in
a Sonine polynomial expansion. The results reported here extend previous
calculations [V. Garz\'o and J. W. Dufty, Phys. Fluids {\bf 14}, 1476 (2002)]
to an arbitrary number of dimensions. To check the accuracy of the
Chapman-Enskog results, the inelastic Boltzmann equation is also numerically
solved by means of the direct simulation Monte Carlo method to evaluate the
diffusion and shear viscosity coefficients for hard disks. The comparison shows
a good agreement over a wide range of values of the coefficients of restitution
and the parameters of the mixture (masses and sizes).Comment: 6 figures, to be published in J. Stat. Phy
Disorder-Induced First Order Transition and Curie Temperature Lowering in Ferromagnatic Manganites
We study the effect that size disorder in the cations surrounding manganese
ions has on the magnetic properties of manganites. This disorder is mimic with
a proper distribution of spatially disordered Manganese energies. Both, the
Curie temperature and the order of the transition are strongly affected by
disorder. For moderate disorder the Curie temperature decreases linearly with
the the variance of the distribution of the manganese site energies, and for a
disorder comparable to that present in real materials the transition becomes
first order. Our results provide a theoretical framework to understand disorder
effects on the magnetic behavior of manganites.Comment: 4 pages, three figures include
Canted phase in double quantum dots
We perform a Hartree-Fock calculation in order to describe the ground state
of a vertical double quantum dot in the absence of magnetic fields parallel to
the growth direction. Intra- and interdot exchange interactions determine the
singlet or triplet character of the system as the tunneling is tuned. At finite
Zeeman splittings due to in-plane magnetic fields, we observe the continuous
quantum phase transition from ferromagnetic to symmetric phase through a canted
antiferromagnetic state. The latter is obtained even at zero Zeeman energy for
an odd electron number.Comment: 5 pages, 3 figure
Heat to Electricity Conversion by a Graphene Stripe with Heavy Chiral Fermions
A conversion of thermal energy into electricity is considered in the
electrically polarized graphene stripes with zigzag edges where the heavy
chiral fermion (HCF) states are formed. The stripes are characterized by a high
electric conductance Ge and by a significant Seebeck coefficient S. The
electric current in the stripes is induced due to a non-equilibrium thermal
injection of "hot" electrons. This thermoelectric generation process might be
utilized for building of thermoelectric generators with an exceptionally high
figure of merit Z{\delta}T \simeq 100 >> 1 and with an appreciable electric
power densities \sim 1 MW/cm2.Comment: 8 pages, 3 figure
- …