82 research outputs found

    The drainage of a foam lamella

    Get PDF
    We present a mathematical model for the drainage of a surfactant-stabilised foam lamella, including capillary, Marangoni and viscous effects and allowing for diffusion, advection and adsorption of the surfactant molecules. We use the slender geometry of a lamella to formulate the model in the thin-film limit and perform an asymptotic decomposition of the liquid domain into a capillary-static Plateau border, a time-dependent thin film and a transition region between the two. By solving a quasi-steady boundary-value problem in the transition region, we obtain the flux of liquid from the lamella into the Plateau border and thus are able to determine the rate at which the lamella drains. Our method is illustrated initially in the surfactant-free case. Numerical results are presented for three particular parameter regimes of interest when surfactant is present. Both monotonic profiles and those exhibiting a dimple near the Plateau border are found, the latter having been previously observed in experiments. The velocity field may be uniform across the lamella or of parabolic Poiseuille type, with fluid either driven out along the centre-line and back along the free surfaces or vice versa. We find that diffusion may be negligible for a typical real surfactant, although this does not lead to a reduction in order because of the inherently diffusive nature of the fluid-surfactant interaction. Finally, we obtain the surprising result that the flux of liquid from the lamella into the Plateau border increases as the lamella thins, approaching infinity at a finite lamella thickness

    Mathematical modelling of the overflowing cylinder experiment

    Get PDF
    The overflowing cylinder (OFC) is an experimental apparatus designed to generate a controlled straining flow at a free surface, whose dynamic properties may then be investigated. Surfactant solution is pumped up slowly through a vertical cylinder. On reaching the top, the liquid forms a flat free surface which expands radially before overflowing down the side of the cylinder. The velocity, surface tension and surfactant concentration on the expanding free surface are measured using a variety of non-invasive techniques. A mathematical model for the OFC has been previously derived by Breward, Darton, Howell and Ockendon and shown to give satisfactory agreement with experimental results. However, a puzzling indeterminacy in the model renders it unable to predict one scalar parameter (e.g. the surfactant concentration at the centre of the cylinder), which must be therefore be taken from the experiments. In this paper we analyse the OFC model asymptotically and numerically. We show that solutions typically develop one of two possible singularities. In the first, the surface concentration of surfactant reaches zero a finite distance from the cylinder axis, while the surface velocity tends to infinity there. In the second, the surfactant concentration is exponentially large and a stagnation point forms just inside the rim of the cylinder. We propose a criterion for selecting the free parameter, based on the elimination of both singularities, and show that it leads to good agreement with experimental results

    Straining flow of a micellar surfactant solution

    Get PDF
    We present a mathematical model describing the distribution of monomer and micellar surfactant in a steady straining flow beneath a fixed free surface. The model includes adsorption of monomer surfactant at the surface and a single-step reaction whereby nn monomer molecules combine to form each micelle. The equations are analysed asymptotically and numerically and the results are compared with experiments. Previous studies of such systems have often assumed equilibrium between the monomer and micellar phases, i.e. that the reaction rate is effectively infinite. Our analysis shows that such an approach inevitably fails under certain physical conditions and also cannot accurately match some experimental results. Our theory provides an improved fit with experiments and allows the reaction rates to be estimated

    A multiphase model describing vascular tumour growth

    Get PDF
    In this paper we present a new model framework for studying vascular tumour growth, in which the blood vessel density is explicitly considered. Our continuum model comprises conservation of mass and momentum equations for the volume fractions of tumour cells, extracellular material and blood vessels. We include the physical mechanisms that we believe to be dominant, namely birth and death of tumour cells, supply and removal of extracellular fluid via the blood and lymph drainage vessels, angiogenesis and blood vessel occlusion. We suppose that the tumour cells move in order to relieve the increase in mechanical stress caused by their proliferation. We show how to reduce the model to a system of coupled partial differential equations for the volume fraction of tumour cells and blood vessels and the phase averaged velocity of the mixture. We consider possible parameter regimes of the resulting model. We solve the equations numerically in these cases, and discuss the resulting behaviour. The model is able to reproduce tumour structure that is found `in vivo' in certain cases. Our framework can be easily modified to incorporate the effect of other phases, or to include the effect of drugs

    The mathematics of foam

    Get PDF
    The aim of this thesis is to derive and solve mathematical models for the flow of liquid in a foam. A primary concern is to investigate how so-called `Marangoni stresses' (i.e. surface tension gradients), generated for example by the presence of a surfactant, act to stabilise a foam. We aim to provide the key microscopic components for future foam modelling. We begin by describing in detail the influence of surface tension gradients on a general liquid flow, and various physical mechanisms which can give rise to such gradients. We apply the models thus devised to an experimental configuration designed to investigate Marangoni effects. Next we turn our attention to the flow in the thin liquid films (`lamellae') which make up a foam. Our methodology is to simplify the field equations (e.g. the Navier-Stokes equations for the liquid) and free surface conditions using systematic asymptotic methods. The models so derived explain the `stiffening' effect of surfactants at free surfaces, which extends considerably the lifetime of a foam. Finally, we look at the macroscopic behaviour of foam using an ad-hoc averaging of the thin film models

    The effect of polar lipids on tear film dynamics

    Get PDF
    In this paper we present a mathematical model describing the effect of polar lipids on the evolution of a precorneal tear film, with the aim of explaining the interesting experimentally observed phenomenon that the tear film continues to move upwards even after the upper eyelid has become stationary. The polar lipid is an insoluble surface species that locally alters the surface tension of the tear film. In the lubrication limit, the model reduces to two coupled nonlinear partial differential equations for the film thickness and the concentration of lipid. We solve the system numerically and observe that the presence of the lipid causes an increase in flow of liquid up the eye. We further exploit the size of the parameters in the problem to explain the initial evolution of the system

    Modelling foam drainage

    Get PDF
    Foaming occurs in many distillation and absorption processes. In this paper, two basic building blocks that are needed to model foam drainage and hence foam stability are discussed. The first concerns the flow of liquid from the lamellae to the Plateau borders and the second describes the drainage flows that occur within the borders. The mathematical modelling involves a balance between gravity, diffusion, viscous forces, and varying surface tension effects with or without the presence of monolayers of surfactant. In some cases, mass transfer through the gas-liquid interface also causes foam stabilisation, and must be included. Our model allows us to clarify which mechanisms are most likely to dominate in both the lamellae and Plateau borders and hence to determine their evolution. The model provides a theoretical framework for the prediction of foam drainage and collapse rates. The analysis shows that significant foam stability can arise from small surface tension variations

    The effect of surfactants on expanding free surfaces

    Get PDF
    This paper develops a systematic theory for the flow observed in the so-called ``overflowing cylinder'' experiment. The basic phenomenon to be explained is the order of magnitude increase in the surface velocity of a slowly overflowing beaker of water that is caused by the addition of a small amount of soluble surfactant. We perform analyses of (i) an inviscid bulk flow in which diffusion is negligible, (ii) a hydrodynamic boundary layer in which viscous effects become important, (iii) a diffusive boundary layer where diffusion is significant, and by matching these together arrive at a coupled problem for the liquid velocity and surfactant concentration. Our model predicts a relation between surface velocity and surface concentration which is in good agreement with experiment. However a degeneracy in the boundary conditions leaves one free parameter which must be taken from experimental data. We suggest an investigation that may resolve this indeterminacy

    Boundary conditions for free surface inlet and outlet\ud problems

    Get PDF
    We investigate and compare the boundary conditions that are to be applied to free surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well-known that the flux scales with Ca2/3, but this classical result is nonuniform as the contact angle approaches . By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed
    • …
    corecore