75 research outputs found

    Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data

    Get PDF
    We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 431-14+16 day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9σ; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8σ, from a previous analysis of a subset of this data, to 1.8σ with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7σ

    Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T

    Get PDF
    We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3 × 10−42 cm2 at 30 GeV/c2 and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator

    First Dark Matter Search Results from the XENON1T Experiment

    Get PDF
    We report the first dark matter search results from XENON1T, a ∼2000−kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042±12)−kg fiducial mass and in the [5,40]  keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93±0.25)×10−4  events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10  GeV/c2, with a minimum of 7.7×10−47  cm2 for 35−GeV/c2 WIMPs at 90% C.L

    Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T

    Get PDF
    Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above ~ 5 GeV /c2, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a bremsstrahlung photon. In this Letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV /c2 by looking for electronic recoils induced by the Migdal effect and bremsstrahlung using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach

    Search for two-neutrino double electron capture of <sup>124</sup>Xe<sup> </sup>with XENON100

    Get PDF
    Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For 124Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K shell of 124Xe using 7636 kgd of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90% credibility limit on the half-life T1/2>6.5×1020 yr. We have also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and found a sensitivity of T1/2> 6.1 × 1022 yr after an exposure of 2 t yr

    Light Dark Matter Search with Ionization Signals in XENON1T

    Get PDF
    We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22 ± 3) tonne day. Above ∼0.4 keVee, we observe 30 MeV /c2, and absorption of dark photons and axionlike particles for mχ within 0.186–1 keV /c2

    Material radioassay and selection for the XENON1T dark matter experiment

    Get PDF
    The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations

    The XENON1T Dark Matter Experiment

    Get PDF
    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented
    • …
    corecore