37 research outputs found

    Survival of the Fittest: Numerical Modeling of Supernova 2014C

    Full text link
    Initially classified as a supernova (SN) type Ib, \sim 100 days after the explosion SN\,2014C made a transition to a SN type II, presenting a gradual increase in the Hα{\alpha} emission. This has been interpreted as evidence of interaction between the supernova shock wave and a massive shell previously ejected from the progenitor star. In this paper, we present numerical simulations of the propagation of the SN shock through the progenitor star and its wind, as well as the interaction of the SN ejecta with the massive shell. To determine with high precision the structure and location of the shell, we couple a genetic algorithm to a hydrodynamic and a bremsstrahlung radiation transfer code. We iteratively modify the density stratification and location of the shell by minimizing the variance between X-ray observations and synthetic predictions computed from the numerical model. By assuming spherical symmetry, we found that the shell has a mass of 2.6 M_\odot, extends from 1.6 ×1016\times 10^{16} cm to 1.87×10171.87 \times 10^{17} cm, implying that it was ejected 60/(vw/100  km  s1)\sim 60/(v_w/100 {\rm \; km \; s^{-1}}) yrs before the SN explosion, and has a density stratification decaying as r3\sim r^{-3}. We found that the product of metallicity by the ionization fraction (due to photo-ionization by the post-shock X-ray emission) %and/or the SN UV radiation is \sim 0.5. Finally, we predict that, if the density stratification follows the same power-law behaviour, the SN will break out from the shell by mid 2022, i.e. 8.5 years after explosion

    Scary Barbie: An Extremely Energetic, Long-Duration Tidal Disruption Event Candidate Without a Detected Host Galaxy at z = 0.995

    Full text link
    We report multi-wavelength observations and characterization of the ultraluminous transient AT 2021lwx (ZTF20abrbeie; aka ``Barbie'') identified in the alert stream of the Zwicky Transient Facility (ZTF) using a Recommender Engine For Intelligent Transient Tracking (REFITT) filter on the ANTARES alert broker. From a spectroscopically measured redshift of 0.995, we estimate a peak observed pseudo-bolometric luminosity of log (Lmax/[erg/s]_{\text{max}} / [\text{erg}/\text{s}]) = 45.7 from slowly fading ztf-g\it{g} and ztf-rr light curves spanning over 1000 observer-frame days. The host galaxy is not detected in archival Pan-STARRS observations (g>23.3g > 23.3 mag), implying a lower limit to the outburst amplitude of more than 5 mag relative to the quiescent host galaxy. Optical spectra from Lick and Keck Observatories exhibit strong emission lines with narrow cores from the H Balmer series and ultraviolet semi-forbidden lines of Si III] λ\lambda1892, C III] λ\lambda1909, and C II] λ\lambda2325. Typical nebular lines in AGN spectra from ions such as [O II] and [O III] are not detected. These spectral features, along with the smooth light curve that is unlike most AGN flaring activity, and the luminosity that exceeds any observed or theorized supernova, lead us to conclude that AT 2021lwx is most likely an extreme tidal disruption event (TDE). Modeling of ZTF photometry with MOSFiT suggests that the TDE was between a 14M\approx 14 M_{\odot} star and a supermassive black hole of mass MBHM_{\text{BH}} \sim 108M10^{8} M_{\odot}. Continued monitoring of the still-evolving light curve along with deep imaging of the field once AT 2021lwx has faded can test this hypothesis and potentially detect the host galaxy.Comment: 15 pages, 4 figures, 1 Table; Version as published in The Astrophysical Journal Letters. Observations of AT 2021lwx published in the paper can be found at https://bsubraya.github.io/research

    Seven years of coordinated Chandra–NuSTAR observations of SN 2014C unfold the extreme mass-loss history of its stellar progenitor

    Get PDF
    We present the results from our 7 yr long broadband X-ray observing campaign of SN 2014C with Chandra and NuSTAR. These coordinated observations represent the first look at the evolution of a young extragalactic SN in the 0.3–80 keV energy range in the years after core collapse. We find that the spectroscopic metamorphosis of SN 2014C from an ordinary type Ib SN into an interacting SN with copious hydrogen emission is accompanied by luminous X-rays reaching L x ≈ 5.6 × 1040 erg s−1 (0.3–100 keV) at ∼1000 days post-explosion and declining as L x ∝ t −1 afterwards. The broadband X-ray spectrum is of thermal origin and shows clear evidence for cooling after peak, with T(t)≈20keV(t/tpk)−0.5 . Soft X-rays of sub-keV energy suffer from large photoelectric absorption originating from the local SN environment with NHint(t)≈3×1022(t/400days)−1.4cm−2 . We interpret these findings as the result of the interaction of the SN shock with a dense (n ≈ 105 − 106 cm−3), H-rich disk-like circumstellar medium (CSM) with inner radius ∼2 × 1016 cm and extending to ∼1017 cm. Based on the declining NHint(t) and X-ray luminosity evolution, we infer a CSM mass of ∼(1.2 f–2.0 f)M⊙ , where f is the volume filling factor. We place SN 2014C in the context of 121 core-collapse SNe with evidence for strong shock interaction with a thick circumstellar medium. Finally, we highlight the challenges that the current mass-loss theories (including wave-driven mass loss, binary interaction, and line-driven winds) face when interpreting the wide dynamic ranges of CSM parameters inferred from observations

    Evidence for Extended Hydrogen-Poor CSM in the Three-Peaked Light Curve of Stripped Envelope Ib Supernova

    Full text link
    We present multi-band ATLAS photometry for SN 2019tsf, a stripped-envelope Type Ib supernova (SESN). The SN shows a triple-peaked light curve and a late (re-)brightening, making it unique among stripped-envelope systems. The re-brightening observations represent the latest photometric measurements of a multi-peaked Type Ib SN to date. As late-time photometry and spectroscopy suggest no hydrogen, the potential circumstellar material (CSM) must be H-poor. Moreover, late (>150 days) spectra show no signs of narrow emission lines, further disfavouring CSM interaction. On the contrary, an extended CSM structure is seen through a follow-up radio campaign with Karl G. Jansky Very Large Array (VLA), indicating a source of bright optically thick radio emission at late times, which is highly unusual among H-poor SESNe. We attribute this phenomenology to an interaction of the supernova ejecta with spherically-asymmetric CSM, potentially disk-like, and we present several models that can potentially explain the origin of this rare Type Ib supernova. The warped disc model paints a novel picture, where the tertiary companion perturbs the progenitors CSM, that can explain the multi-peaked light curves of SNe, and here we apply it to SN 2019tsf. This SN 2019tsf is likely a member of a new sub-class of Type Ib SNe and among the recently discovered class of SNe that undergo mass transfer at the moment of explosionComment: 23 pages, Comments are welcome, Submitted to Ap

    Radio and X-ray observations of the luminous fast blue optical transient AT 2020xnd

    Get PDF
    We present deep X-ray and radio observations of the fast blue optical transient (FBOT) AT 2020xnd/ZTF 20acigmel at z = 0.2433 from 13 days to 269 days after explosion. AT 2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT 2018cow. AT 2020xnd shows luminous radio emission reaching L ν ≈ 8 × 1029 erg s−1 Hz−1 at 20 GHz and 75 days post-explosion, accompanied by luminous and rapidly fading soft X-ray emission peaking at L X ≈ 6 × 1042 erg s−1. Interpreting the radio emission in the context of synchrotron radiation from the explosion’s shock interaction with the environment, we find that AT 2020xnd launched a high-velocity outflow (v ∼ 0.1c–0.2c) propagating into a dense circumstellar medium (effective Ṁ≈10−3M⊙ yr−1 for an assumed wind velocity of v w = 1000 km s−1). Similar to AT 2018cow, the detected X-ray emission is in excess compared to the extrapolated synchrotron spectrum and constitutes a different emission component, possibly powered by accretion onto a newly formed black hole or neutron star. These properties make AT 2020xnd a high-redshift analog to AT 2018cow, and establish AT 2020xnd as the fourth member of the class of optically luminous FBOTs with luminous multiwavelength counterparts

    Prescribed Burn Effects on Natural Regeneration in Pine Flatwoods: Implications for Uneven-Aged Stand Conversion from a Florida Study

    No full text
    Uneven-aged silvicultural approaches are increasingly utilized as efficient management strategies for economic and ecological sustainability of forest resources, including in the southeastern United States where there is interest in converting intensively managed pine plantations to uneven-aged stands. However, success of stand conversion and perpetuation of an uneven-aged forest stand depends on obtaining adequate regeneration of the desired species and its ability to develop into merchantable size classes. In fire-maintained ecosystems, regeneration dynamics can be challenging for species such as slash pine that are not tolerant of fire in the seedling stage. In this study, we examined the survival of slash pine (Pinus elliottii Englm.) regeneration (seedlings and saplings) following prescribed burns in (1) a harvest-created gap (0.4 ha; 70 m diameter) and (2) a mature stand with abundant advanced regeneration at two mesic-hydric flatwoods sites in northwest Florida, USA. We characterized the prescribed burns at the two sites and quantified survival of regeneration of different size classes (<1 m, 1–2 m, 2–3 m, >3 m) at 10 months after the burn. Within the gap, the greatest survival of regeneration was observed at the center (12.5% survival) in comparison to the other positions in the gap (1.92% to 7.14% survival), with all seedlings <3m height killed by the burn. In the stand with advance regeneration, survival ranged between 0% and 50% at different positions, with all regeneration smaller than 2 m killed by fire. Overall, we observed 6.36% and 23.2% survival in the harvest-created gap and the stand with advance regeneration, respectively. Despite these low percent survival values, post-burn slash pine regeneration (seedlings/saplings) density equaled 725 and 4800 per hectare, respectively. Our modeling projections suggest that this level of post-burn regeneration density may be adequate for stand conversion and sustainable uneven-aged silvicultural management of slash pine. These results suggest that seedling size is the preeminent control on slash pine survival after prescribed burn. However, long-term monitoring of stand dynamics following future prescribed burns and cutting cycle harvests will help confirm if slash pine can be sustainably managed using uneven-aged silviculture
    corecore