7 research outputs found

    Permeation and Block of the Skeletal Muscle Chloride Channel, ClC-1, by Foreign Anions

    No full text
    A distinctive feature of the voltage-dependent chloride channels ClC-0 (the Torpedo electroplaque chloride channel) and ClC-1 (the major skeletal muscle chloride channel) is that chloride acts as a ligand to its own channel, regulating channel opening and so controlling the permeation of its own species. We have now studied the permeation of a number of foreign anions through ClC-1 using voltage-clamp techniques on Xenopus oocytes and Sf9 cells expressing human (hClC-1) or rat (rClC-1) isoforms, respectively. From their effect on channel gating, the anions presented in this paper can be divided into three groups: impermeant or poorly permeant anions that can not replace Cl− as a channel opener and do not block the channel appreciably (glutamate, gluconate, HCO3−, BrO3−); impermeant anions that can open the channel and show significant block (methanesulfonate, cyclamate); and permeant anions that replace Cl− at the regulatory binding site but impair Cl− passage through the channel pore (Br−, NO3−, ClO3−, I−, ClO4−, SCN−). The permeability sequence for rClC-1, SCN− ∼ ClO4− > Cl− > Br− > NO3− ∼ ClO3− > I− >> BrO3− > HCO3− >> methanesulfonate ∼ cyclamate ∼ glutamate, was different from the sequence determined for blocking potency and ability to shift the Popen curve, SCN− ∼ ClO4− > I− > NO3− ∼ ClO3− ∼ methanesulfonate > Br− > cyclamate > BrO3− > HCO3− > glutamate, implying that the regulatory binding site that opens the channel is different from the selectivity center and situated closer to the external side. Channel block by foreign anions is voltage dependent and can be entirely accounted for by reduction in single channel conductance. Minimum pore diameter was estimated to be ∼4.5 Å. Anomalous mole-fraction effects found for permeability ratios and conductance in mixtures of Cl− and SCN− or ClO4− suggest a multi-ion pore. Hydrophobic interactions with the wall of the channel pore may explain discrepancies between the measured permeabilities of some anions and their size

    ClC-1 chloride channel mutations in myotonia congenita: variable penetrance of mutations shifting the voltage dependence

    No full text
    Mutations in the ClC-1 muscle chloride channel cause either recessive or dominant myotonia congenita. Using a systematic screening procedure, we have now identified four novel missense mutations in dominant (V286A, F307S) and recessive myotonia (V236L, G285E), and have analysed the effect of these and other recently described mutations (A313T, I556N) on channel properties in the Xenopus oocyte expression system. Mutations V286A, F307S and A313T displayed a 'classical' dominant phenotype: their voltage dependence was shifted towards positive potentials and displayed a dominant-negative effect by significantly imparting a voltage shift on mutant-wild-type heteromeric channels as found in heterozygous patients. In contrast, the recessive mutation V236L also shifted the voltage dependence to positive values, but co-expression with wild-type ClC-1 gave almost wild-type currents. I556N, a mutation found in patients with benign dominant myotonia, drastically shifts the voltage dependence, but only a slight shift is seen when co-expressed with wild-type ClC-1. Thus, the voltage dependence of mutant heteromeric channels is not always intermediate between those of the constituent homomeric channel subunits, a conclusion further supported by mixing different ClC-1 mutants. These complex interactions correlate clinically with various inheritance patterns, ranging from autosomal dominant with various degrees of penetrance to autosomal recessive

    A new method for assaying propantheline and its degradation product, xanthene-9- carboxylic acid using high performance liquid chromatography

    No full text
    A rapid, specific, and precise high-performance liquid chromatographic method is described for the simultaneous analysis of propantheline bromide and its hydrolysis product, xanthene-9-carboxylic acid. Reversed-phase chromatography was conducted using a mobile phase of 40:60, acetonitrile-0.05 M phosphate buffer (pH 2.5) delivered at 2 ml/min. Detection was at 254 nm. Methantheline bromide (internal standard), propantheline bromide, and xanthene-9-carboxylic acid gave retention times of 4.1, 5.4, and 8.3 min, respectively. Within-day, between-day, and total precision (CV) for assay of 15 mg/10 ml propantheline bromide are 1.2, 1.1, and 1.6%, respectively (n = 20). Similar precision was obtained for xanthene-9-carboxylic acid. The limit of detection was 2 ng. The assay is useful for routine quality assurance of propantheline in dosage forms and for stability and kinetic studies
    corecore