3,355 research outputs found
Connecting Response to Intervention and Grade Retention: Implications for School Leaders
Within all classrooms of public schools, teachers greet general education students acknowledging broad differences in their learning readiness and social skills (Fuchs, Fuchs, & Compton, 2010; Martin, 2010). The needs of some students may be so diverse that educators find implementing differentiated instructional strategies with integrity extremely difficult. Many individually research-based strategies have been implemented to provide helpful instruction to all learners. This paper presents the concept of a merger between two of these strategies: Response to Intervention (RTI) and grade retention. As a result, the conceptual framework for this manuscript is anchored within the RTI and grade retention literatures, highlighting their reported effectiveness on student outcomes
Diffusive radiation in Langmuir turbulence produced by jet shocks
Anisotropic distributions of charged particles including two-stream
distributions give rise to generation of either stochastic electric fields (in
the form of Langmuir waves, Buneman instability) or random quasi-static
magnetic fields (Weibel and filamentation instabilities) or both. These
two-stream instabilities are known to play a key role in collisionless shock
formation, shock-shock interactions, and shock-induced electromagnetic
emission. This paper applies the general non-perturbative stochastic theory of
radiation to study electromagnetic emission produced by relativistic particles,
which random walk in the stochastic electric fields of the Langmuir waves. This
analysis takes into account the cumulative effect of uncorrelated Langmuir
waves on the radiating particle trajectory giving rise to angular diffusion of
the particle, which eventually modifies the corresponding radiation spectra. We
demonstrate that the radiative process considered is probably relevant for
emission produced in various kinds of astrophysical jets, in particular, prompt
gamma-ray burst spectra, including X-ray excesses and prompt optical flashes.Comment: 9 pages, 5 figures, MNRAS, accepte
Architectures for Human Exploration of Near Earth Asteroids
The presentation explores human exploration of Near Earth Asteroid (NEA) key factors including challenges of supporting humans for long-durations in deep-space, incorporation of advanced technologies, mission design constraints, and how many launches are required to conduct a round trip human mission to a NEA. Topics include applied methodology, all chemical NEA mission operations, all nuclear thermal propulsion NEA mission operations, SEP only for deep space mission operations, and SEP/chemical hybrid mission operations. Examples of mass trends between datasets are provided as well as example sensitivity of delta-v and trip home, sensitivity of number of launches and trip home, and expected targets for various transportation architectures
Probing the Geometry of Warped String Compactifications at the LHC
Warped string compactifications, characterized by non-singular behavior of
the metric in the infrared (IR), feature departures from the usual anti-de
Sitter warped extra dimensions. We study the implications of the smooth IR
cutoff for Randall-Sundrum (RS) type models. We find that the phenomenology of
the KK gravitons (including their masses and couplings) depends sensitively on
the precise shape of the warp factor in the IR. In particular, we analyze the
warped deformed conifold and find that the spectrum differs significantly from
that of RS, and present a simple prescription (a mass gap ansatz) which can be
used to study the phenomenology of IR modifications to 5-d warped extra
dimensions.Comment: 4 pages, 4 figures; v2. typos corrected, references added, improved
resolution of Figure
Strategic Implications of Phobos as a Staging Point for Mars Surface Missions
As human exploration endeavors begin to set sights beyond low Earth orbit to the surface of the Moon, exploration of the surface of Mars continues to serve as the horizon destination to help focus development and research efforts. One Mars exploration strategy often discussed is the notion of utilizing the moons of Mars, namely Phobos, as an exploration destination prior to Mars surface missions. The premise behind this is that staging missions from Mars moons as well as exploring the moons themselves would be less costly and risky. However, understanding potential advantages of Phobos staging and exploration must be done in the context of the overall end-to-end Mars surface exploration needs, goals, objectives, campaign approach, and systems required. This paper examines the strategic implications of utilizing the moons of Mars as a potential location for exploration of Mars. Operational concepts utilizing both Phobos and Mars orbital strategies will be examined to understand the architectural impacts of this staging strategy. The strategic implications of each operational concept are assessed to determine the overall key challenges and strategic links to other exploration destinations. Results from this analysis indicate that, if the objective is to conduct Mars surface missions, utilizing Phobos as an exploration destination adds little benefit toward the goal of exploration of Mars
Strategic Implications of Human Exploration of Near-Earth Asteroids
The current United States Space Policy [1] as articulated by the White House and later confirmed by the Congress [2] calls for [t]he extension of the human presence from low-Earth orbit to other regions of space beyond low-Earth orbit will enable missions to the surface of the Moon and missions to deep space destinations such as near-Earth asteroids and Mars. Human exploration of the Moon and Mars has been the focus of numerous exhaustive studies and planning, but missions to Near-Earth Asteroids (NEAs) has, by comparison, garnered relatively little attention in terms of mission and systems planning. This paper examines the strategic implications of human exploration of NEAs and how they can fit into the overall exploration strategy. This paper specifically addresses how accessible NEAs are in terms of mission duration, technologies required, and overall architecture construct. Example mission architectures utilizing different propulsion technologies such as chemical, nuclear thermal, and solar electric propulsion were formulated to determine resulting figures of merit including number of NEAs accessible, time of flight, mission mass, number of departure windows, and length of the launch windows. These data, in conjunction with what we currently know about these potential exploration targets (or need to know in the future), provide key insights necessary for future mission and strategic planning
EDL Pathfinder Missions
NASA is developing a longterm strategy for achieving extended human missions to Mars in support of the policies outlined in the 2010 NASA Authorization Act and National Space Policy. The Authorization Act states that "A long term objective for human exploration of space should be the eventual international exploration of Mars." Echoing this is the National Space Policy, which directs that NASA should, "By 2025, begin crewed missions beyond the moon, including sending humans to an asteroid. By the mid2030s, send humans to orbit Mars and return them safely to Earth." Further defining this goal, NASA's 2014 Strategic Plan identifies that "Our longterm goal is to send humans to Mars. Over the next two decades, we will develop and demonstrate the technologies and capabilities needed to send humans to explore the red planet and safely return them to Earth." Over the past several decades numerous assessments regarding human exploration of Mars have indicated that landing humans on the surface of Mars remains one of the key critical challenges. In 2015 NASA initiated an Agencywide assessment of the challenges associated with Entry, Descent, and Landing (EDL) of large payloads necessary for supporting human exploration of Mars. Due to the criticality and longlead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. This paper provides an overview of NASA's 2015 EDL assessment on understanding the key EDL risks with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies, that is, benefits of flight demonstration at Mars relative to terrestrial test, modeling, and analysis. The goal of the activity was to determine if a subscale demonstrator is necessary, or if NASA should take a direct path to a humanscale lander. This assessment also provided insight into how EDL advancements align with other Agency Mars lander activities such as the technology portfolio investments and post2020 robotic Mars Exploration Program missions
Reducing the Risk of Human Missions to Mars Through Testing
During the summer of 2002 the NASA Deputy Administrator charted an internal NASA planning group to develop the rationale for exploration beyond low-Earth orbit. This team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond Low-Earth Orbit through the human exploration of Mars. The previous NASA Exploration Team (NEXT) activities laid the foundation and framework for development of NASA s Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the Stepping Stone approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low- Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human and robotic exploration strategy. Recommendations from the Exploration Blueprint included the endorsement of the Nuclear Systems Initiative, augmentation of the bioastronautics research, a focused space transportation program including heavy-lift launch and a common exploration vehicle design for ISS and exploration missions, as well as an integrated human and robotic exploration strategy for Mars. Following the results of the Exploration Blueprint study, the NASA Administrator has asked for a recommendation by June, 2003 on the next steps in human and robotic exploration in order to put into context an updated Integrated Space Transportation Plan (post- Columbia) and guide Agency planning. NASA was on the verge of committing significant funding in programs that would be better served if longer term goals were better known including the Orbital Space Plane, research on the ISS, National Aerospace Initiative, Shuttle Life Extension Program, Project Prometheus, as well as a wide range of technology development throughout the Agency. Much of the focus during this period was on integrating the results from the previous studies into more concrete implementation strategies in order to understand the relationship between NASA programs, timing, and resulting budgetary implications. This resulted in an integrated approach including lunar surface operations to retire risk of human Mars missions, maximum use of common and modular systems including what was termed the exploration transfer vehicle, Earth orbit and lunar surface demonstrations of long-life systems, collaboration of human and robotic missions to vastly increase mission return, and high-efficiency transportation systems (nuclear) for deep-space transportation and power. The data provided in this summary viewgraph presentation was developed to begin to address one of the key elements of the emerging implementation strategy, namely how lunar missions help retire risk of human missions to Mars. During this process the scope of the activity broadened into the issue of how testing in general, in various venues including the Moon, can help reduce the risk for Mars missions
- …