978 research outputs found

    Reconfigurable photonic RF filters based on integrated Kerr frequency comb sources

    Full text link
    We demonstrate two categories of photonic radio frequency (RF) filters based on integrated optical micro-combs. The first one is based on the transversal filtering structure and the second one is based on the channelization technique. The large number of wavelengths brought about by the microcomb results in a significantly increased RF spectral resolution and a large instantaneous bandwidth for the RF filters. For the RF transversal filter, we demonstrated Q factor enhancement, improved out-of-band rejection, tunable centre frequency, and reconfigurable filtering shapes. While a high resolution of 117 MHz, a large RF instantaneous bandwidth of 4.64 GHz, and programmable RF transfer functions including binary-coded notch filters and RF equalizing filters with reconfigurable slopes are demonstrated for the RF channelized filter. The microcomb-based approaches feature a potentially much smaller cost and footprint, and is promising for integrated photonic RF filters.Comment: 4 pages, 5 figures, 32 references. arXiv admin note: substantial text overlap with arXiv:1903.0854

    Reconfigurable fractional microwave signal processor based on a microcomb

    Full text link
    We propose and demonstrate reconfigurable fractional microwave signal processing based on an integrated Kerr optical microcomb. We achieve two forms of microwave signal processing functions, a fractional Hilbert transform as well as a fractional differentiator. For the Hilbert transform we demonstrate a phase shift of 45 degrees, half that of a full Hilbert transform, while for the differentiator we achieve square-root differentiation. For both, we achieve high resolution over a broad bandwidth of 17 GHz with a phase deviation of less than 5 per degree within the achieved passband. This performance in both the frequency and time domains demonstrates the versatility and power of micro-combs as a basis for high performance microwave signal processing.Comment: 4 pages 5 figures, 32 references. arXiv admin note: text overlap with arXiv:1903.08541, arXiv:1904.0099

    Phase-encoded RF signal generation based on an integrated 49GHz micro-comb optical source

    Full text link
    We demonstrate photonic RF phase encoding based on an integrated micro-comb source. By assembling single-cycle Gaussian pulse replicas using a transversal filtering structure, phase encoded waveforms can be generated by programming the weights of the wavelength channels. This approach eliminates the need for RF signal generators for RF carrier generation or arbitrary waveform generators for phase encoded signal generation. A large number of wavelengths of up to 60 were provided by the microcomb source, yielding a high pulse compression ratio of 30. Reconfigurable phase encoding rates ranging from 2 to 6 Gb/s were achieved by adjusting the length of each phase code. This work demonstrates the significant potentials of this microcomb-based approach to achieve high-speed RF photonic phase encoding with low cost and footprint.Comment: 11 pages, 8 figures, 46 references. Paper has been revised to update the references. No other changes have been mad

    Optical data transmission at 44Tb/s and 10 bits/s/Hz over the C-band with standard fibre and a single micro-comb source

    Full text link
    Micro-combs [1 - 4], optical frequency combs generated by integrated micro-cavity resonators, offer the full potential of their bulk counterparts [5,6], but in an integrated footprint. The discovery of temporal soliton states (DKS dissipative Kerr solitons) [4,7-11] as a means of modelocking microcombs has enabled breakthroughs in many fields including spectroscopy [12,13], microwave photonics [14], frequency synthesis [15], optical ranging [16,17], quantum sources [18,19], metrology [20,21] and more. One of their most promising applications has been optical fibre communications where they have enabled massively parallel ultrahigh capacity multiplexed data transmission [22,23]. Here, by using a new and powerful class of microcomb called soliton crystals [11], we achieve unprecedented data transmission over standard optical fibre using a single integrated chip source. We demonstrate a line rate of 44.2 Terabits per second using the telecommunications C band at 1550nm with a spectral efficiency, a critically important performance metric, of 10.4 bits/s/Hz. Soliton crystals exhibit robust and stable generation and operation as well as a high intrinsic efficiency that, together with a low soliton microcomb spacing of 48.9 GHz enable the use of a very high coherent data modulation format of 64 QAM (quadrature amplitude modulated). We demonstrate error free transmission over 75 km of standard optical fibre in the laboratory as well as in a field trial over an installed metropolitan optical fibre network. These experiments were greatly aided by the ability of the soliton crystals to operate without stabilization or feedback control. This work demonstrates the capability of optical soliton crystal microcombs to perform in demanding and practical optical communications networks.Comment: 15 pages, 4 figures, 58 reference
    • …
    corecore