69 research outputs found

    Towards non-reductive geometric invariant theory

    Full text link
    We study linear actions of algebraic groups on smooth projective varieties X. A guiding goal for us is to understand the cohomology of "quotients" under such actions, by generalizing (from reductive to non-reductive group actions) existing methods involving Mumford's geometric invariant theory (GIT). We concentrate on actions of unipotent groups H, and define sets of stable points X^s and semistable points X^{ss}, often explicitly computable via the methods of reductive GIT, which reduce to the standard definitions due to Mumford in the case of reductive actions. We compare these with definitions in the literature. Results include (1) a geometric criterion determining whether or not a ring of invariants is finitely generated, (2) the existence of a geometric quotient of X^s, and (3) the existence of a canonical "enveloping quotient" variety of X^{ss}, denoted X//H, which (4) has a projective completion given by a reductive GIT quotient and (5) is itself projective and isomorphic to Proj(k[X]^H) when k[X]^H is finitely generated.Comment: 37 pages, 1 figure (parabola2.eps), in honor of Bob MacPherson's 60th birthda

    A^1-homotopy groups, excision, and solvable quotients

    Get PDF
    We study some properties of A^1-homotopy groups: geometric interpretations of connectivity, excision results, and a re-interpretation of quotients by free actions of connected solvable groups in terms of covering spaces in the sense of A^1-homotopy theory. These concepts and results are well-suited to the study of certain quotients via geometric invariant theory. As a case study in the geometry of solvable group quotients, we investigate A^1-homotopy groups of smooth toric varieties. We give simple combinatorial conditions (in terms of fans) guaranteeing vanishing of low degree A^1-homotopy groups of smooth (proper) toric varieties. Finally, in certain cases, we can actually compute the "next" non-vanishing A^1-homotopy group (beyond \pi_1^{A^1}) of a smooth toric variety. From this point of view, A^1-homotopy theory, even with its exquisite sensitivity to algebro-geometric structure, is almost "as tractable" (in low degrees) as ordinary homotopy for large classes of interesting varieties.Comment: 48 pages, To appear Adv. Math, typographical and grammatical update
    • …
    corecore