25 research outputs found
Recommended from our members
Not so Dangerous After All? Venom Composition and Potency of the Pholcid (Daddy Long-Leg) Spider Physocyclus mexicanus
Pholcid spiders (Araneae: Pholcidae), officially "cellar spiders" but popularly known as "daddy long-legs," are renown for the potential of deadly toxic venom, even though venom composition and potency has never formally been studied. Here we detail the venom composition of male Physocyclus mexicanus using proteomic analyses and venom-gland transcriptomes ("venomics"). We also analyze the venom's potency on insects, and assemble available evidence regarding mammalian toxicity. The majority of the venom (51% of tryptic polypeptides and 62% of unique tryptic peptides) consists of proteins homologous to known venom toxins including enzymes (astacin metalloproteases, serine proteases and metalloendopeptidases, particularly neprilysins) and venom peptide neurotoxins. We identify 17 new groups of peptides (U1-17-PHTX) most of which are homologs of known venom peptides and are predicted to have an inhibitor cysteine knot fold; of these, 13 are confirmed in the proteome. Neprilysins (M13 peptidases), and astacins (M12 peptidases) are the most abundant venom proteins, respectively representing 15 and 11% of the individual proteins and 32 and 20% of the tryptic peptides detected in crude venom. Comparative evidence suggests that the neprilysin gene family is expressed in venoms across a range of spider taxa, but has undergone an expansion in the venoms of pholcids and may play a central functional role in these spiders. Bioassays of crude venoms on crickets resulted in an effective paralytic dose of 3.9 mu g/g, which is comparable to that of crude venoms of Plectreurys tristis and other Synspermiata taxa. However, crickets exhibit flaccid paralysis and regions of darkening that are not observed after P. tristis envenomation. Documented bites on humans make clear that while these spiders can bite, the typical result is a mild sting with no long-lasting effects. Together, the evidence we present indicates pholcid venoms are a source of interesting new peptides and proteins, and effects of bites on humans and other mammals are inconsequential.National Institute of Health [R15-GM-097696-01]; Lewis Clark College; Lewis & Clark students SophiaOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Essential Role for the Response Regulator PmrA in Coxiella burnetii Type 4B Secretion and Colonization of Mammalian Host Cells
Successful host cell colonization by the Q fever pathogen, Coxiella burnetii, requires translocation of effector proteins into
the host cytosol by a Dot/Icm type 4B secretion system (T4BSS). In Legionella pneumophila, the two-component system (TCS)
PmrAB regulates the Dot/Icm T4BSS and several additional physiological processes associated with pathogenesis. Because PmrA
consensus regulatory elements are associated with some dot/icm and substrate genes, a similar role for PmrA in regulation of the
C. burnetii T4BSS has been proposed. Here, we constructed a C. burnetii pmrA deletion mutant to directly probe PmrA-mediated
gene regulation. Compared to wild-type bacteria, C. burnetii ΔpmrA exhibited severe intracellular growth defects that coincided
with failed secretion of effector proteins. Luciferase gene reporter assays demonstrated PmrA-dependent expression of 5 of
7 dot/icm operons and 9 of 11 effector-encoding genes with a predicted upstream PmrA regulatory element. Mutational analysis
verified consensus sequence nucleotides required for PmrA-directed transcription. RNA sequencing and whole bacterial cell
mass spectrometry of wild-type C. burnetii and the ΔpmrA mutant uncovered new components of the PmrA regulon, including
several genes lacking PmrA motifs that encoded Dot/Icm substrates. Collectively, our results indicate that the PmrAB TCS is a
critical virulence factor that regulates C. burnetii Dot/Icm secretion. The presence of PmrA-responsive genes lacking PmrA regulatory
elements also suggests that the PmrAB TCS controls expression of regulatory systems associated with the production of
additional C. burnetii proteins involved in host cell parasitism
Recommended from our members
The transposable elements of the Drosophila melanogaster
Background: Transposable elements are found in the genomes of nearly all eukaryotes. The
recent completion of the Release 3 euchromatic genomic sequence of Drosophila melanogaster by
the Berkeley Drosophila Genome Project has provided precise sequence for the repetitive
elements in the Drosophila euchromatin. We have used this genomic sequence to describe the
euchromatic transposable elements in the sequenced strain of this species.
Results: We identified 85 known and eight novel families of transposable element varying in copy
number from one to 146. A total of 1,572 full and partial transposable elements were identified,
comprising 3.86% of the sequence. More than two-thirds of the transposable elements are partial.
The density of transposable elements increases an average of 4.7 times in the centromereproximal
regions of each of the major chromosome arms. We found that transposable elements
are preferentially found outside genes; only 436 of 1,572 transposable elements are contained
within the 61.4 Mb of sequence that is annotated as being transcribed. A large proportion of
transposable elements is found nested within other elements of the same or different classes.
Lastly, an analysis of structural variation from different families reveals distinct patterns of
deletion for elements belonging to different classes.
Conclusions: This analysis represents an initial characterization of the transposable elements in
the Release 3 euchromatic genomic sequence of D. melanogaster for which comparison to the
transposable elements of other organisms can begin to be made. These data have been made
available on the Berkeley Drosophila Genome Project website for future analyses
The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective.
BACKGROUND: Transposable elements are found in the genomes of nearly all eukaryotes. The recent completion of the Release 3 euchromatic genomic sequence of Drosophila melanogaster by the Berkeley Drosophila Genome Project has provided precise sequence for the repetitive elements in the Drosophila euchromatin. We have used this genomic sequence to describe the euchromatic transposable elements in the sequenced strain of this species. RESULTS: We identified 85 known and eight novel families of transposable element varying in copy number from one to 146. A total of 1,572 full and partial transposable elements were identified, comprising 3.86% of the sequence. More than two-thirds of the transposable elements are partial. The density of transposable elements increases an average of 4.7 times in the centromere-proximal regions of each of the major chromosome arms. We found that transposable elements are preferentially found outside genes; only 436 of 1,572 transposable elements are contained within the 61.4 Mb of sequence that is annotated as being transcribed. A large proportion of transposable elements is found nested within other elements of the same or different classes. Lastly, an analysis of structural variation from different families reveals distinct patterns of deletion for elements belonging to different classes. CONCLUSIONS: This analysis represents an initial characterization of the transposable elements in the Release 3 euchromatic genomic sequence of D. melanogaster for which comparison to the transposable elements of other organisms can begin to be made. These data have been made available on the Berkeley Drosophila Genome Project website for future analyses.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Recommended from our members
Genomic investigation of the strawberry pathogen Phytophthora fragariae indicates pathogenicity is associated with transcriptional variation in three key races
The oomycete Phytophthora fragariae is a highly destructive pathogen of cultivated strawberry (Fragaria × ananassa), causing the root rotting disease, “red core”. The host-pathogen interaction has a well described gene-for-gene resistance relationship, but to date neither candidate avirulence nor resistance genes have been identified. We sequenced a set of American, Canadian, and United Kingdom isolates of known race type, along with three representatives of the closely related pathogen of the raspberry (Rubus idaeus), P. rubi, and found a clear population structure, with a high degree of nucleotide divergence seen between some race types and abundant private variation associated with race types 4 and 5. In contrast, between isolates defined as United Kingdom races 1, 2, and 3 (UK1-2-3) there was no evidence of gene loss or gain; or the presence of insertions/deletions (INDELs) or Single Nucleotide Polymorphisms (SNPs) within or in proximity to putative pathogenicity genes could be found associated with race variation. Transcriptomic analysis of representative UK1-2-3 isolates revealed abundant expression variation in key effector family genes associated with pathogen race; however, further long read sequencing did not reveal any long range polymorphisms to be associated with avirulence to race UK2 or UK3 resistance, suggesting either control in trans or other stable forms of epigenetic modification modulating gene expression. This work reveals the combined power of population resequencing to uncover race structure in pathosystems and in planta transcriptomic analysis to identify candidate avirulence genes. This work has implications for the identification of putative avirulence genes in the absence of associated expression data and points toward the need for detailed molecular characterisation of mechanisms of effector regulation and silencing in oomycete plant pathogens
Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome
BACKGROUND: It is widely accepted that comparative sequence data can aid the functional annotation of genome sequences; however, the most informative species and features of genome evolution for comparison remain to be determined. RESULTS: We analyzed conservation in eight genomic regions (apterous, even-skipped, fushi tarazu, twist, and Rhodopsins 1, 2, 3 and 4) from four Drosophila species (D. erecta, D. pseudoobscura, D. willistoni, and D. littoralis) covering more than 500 kb of the D. melanogaster genome. All D. melanogaster genes (and 78-82% of coding exons) identified in divergent species such as D. pseudoobscura show evidence of functional constraint. Addition of a third species can reveal functional constraint in otherwise non-significant pairwise exon comparisons. Microsynteny is largely conserved, with rearrangement breakpoints, novel transposable element insertions, and gene transpositions occurring in similar numbers. Rates of amino-acid substitution are higher in uncharacterized genes relative to genes that have previously been studied. Conserved non-coding sequences (CNCSs) tend to be spatially clustered with conserved spacing between CNCSs, and clusters of CNCSs can be used to predict enhancer sequences. CONCLUSIONS: Our results provide the basis for choosing species whose genome sequences would be most useful in aiding the functional annotation of coding and cis-regulatory sequences in Drosophila. Furthermore, this work shows how decoding the spatial organization of conserved sequences, such as the clustering of CNCSs, can complement efforts to annotate eukaryotic genomes on the basis of sequence conservation alone
Comparative Genomic Analysis of 31 Phytophthora Genomes Reveals Genome Plasticity and Horizontal Gene Transfer
Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts, including crops, trees, and ornamentals. We sequenced the genomes of 31 individual Phytophthora species and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, and plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus, we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine-learning approach to identify horizontally transferred genes with bacterial or fungal origin, we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthora spp. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in genus Phytophthora. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license
Recommended from our members
Reconciling Conflicting Phylogenies in the Origin of Sweet Potato and Dispersal to Polynesia
The sweet potato is one of the world’s most widely consumed crops, yet its evolutionary history is poorly understood. In this paper, we present a comprehensive phylogenetic study of all species closely related to the sweet potato and address several questions pertaining to the sweet potato that remained unanswered. Our research combined genome skimming and target DNA capture to sequence whole chloroplasts and 605 single-copy nuclear regions from 199 specimens representing the sweet potato and all of its crop wild relatives (CWRs). We present strongly supported nuclear and chloroplast phylogenies demonstrating that the sweet potato had an autopolyploid origin and that Ipomoea trifida is its closest relative, confirming that no other extant species were involved in its origin. Phylogenetic analysis of nuclear and chloroplast genomes shows conflicting topologies regarding the monophyly of the sweet potato. The process of chloroplast capture explains these conflicting patterns, showing that I. trifida had a dual role in the origin of the sweet potato, first as its progenitor and second as the species with which the sweet potato introgressed so one of its lineages could capture an I. trifida chloroplast. In addition, we provide evidence that the sweet potato was present in Polynesia in pre-human times. This, together with several other examples of long-distance dispersal in Ipomoea, negates the need to invoke ancient human-mediated transport as an explanation for its presence in Polynesia. These results have important implications for understanding the origin and evolution of a major global food crop and question the existence of pre-Columbian contacts between Polynesia and the American continent
Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence
BACKGROUND: The Drosophila melanogaster genome was the first metazoan genome to have been sequenced by the whole-genome shotgun (WGS) method. Two issues relating to this achievement were widely debated in the genomics community: how correct is the sequence with respect to base-pair (bp) accuracy and frequency of assembly errors? And, how difficult is it to bring a WGS sequence to the accepted standard for finished sequence? We are now in a position to answer these questions. RESULTS: Our finishing process was designed to close gaps, improve sequence quality and validate the assembly. Sequence traces derived from the WGS and draft sequencing of individual bacterial artificial chromosomes (BACs) were assembled into BAC-sized segments. These segments were brought to high quality, and then joined to constitute the sequence of each chromosome arm. Overall assembly was verified by comparison to a physical map of fingerprinted BAC clones. In the current version of the 116.9 Mb euchromatic genome, called Release 3, the six euchromatic chromosome arms are represented by 13 scaffolds with a total of 37 sequence gaps. We compared Release 3 to Release 2; in autosomal regions of unique sequence, the error rate of Release 2 was one in 20,000 bp. CONCLUSIONS: The WGS strategy can efficiently produce a high-quality sequence of a metazoan genome while generating the reagents required for sequence finishing. However, the initial method of repeat assembly was flawed. The sequence we report here, Release 3, is a reliable resource for molecular genetic experimentation and computational analysis