11,293 research outputs found

    EDF favours resident construction firms

    Full text link

    Summary statement of the Asilomar conference on recombinant DNA molecules

    Get PDF
    This meeting was organized to review scientific progress in research on recombinant DNA molecules and to discuss appropriate ways to deal with the potential biohazards of this work. Impressive scientific achievements have already been made in this field and these techniques have a remarkable potential for furthering our understanding of fundamental biochemical processes in pro- and eukaryotic cells. The use of recombinant DNA methodology promises to revolutionize the practice of molecular biology. Although there has as yet been no practical application of the new techniques, there is every reason to believe that they will have significant practical utility in the future

    Elastic anisotropy and yield surface estimates of polycrystals

    Get PDF
    AbstractHomogenization estimates based on the self-consistent scheme are customarily used to describe the plastic yielding of polycrystals. Such estimates of the initial micro yield surface of a polycrystal depend on the morphologic and crystallographic textures, the slip system geometry, the corresponding critical resolved shear stresses and the single crystal elastic anisotropy. The usual approach relies on a rather crude description of the stress field induced by the local elastic anisotropy. This deficiency is addressed and a new concept, i.e. a ā€œprobabilityā€ yield surface is proposed. Based on a statistical description of the local fields, the latter makes use of the average and the standard deviation of the resolved shear stress on the different slip systems within a given crystalline orientation. By comparing the homogenization estimates with full-field results, it is shown that the self-consistent scheme does not present intrinsic shortcomings regarding the prediction of the micro yield stress of polycrystals with anisotropic elastic constitutive behaviour. On the contrary, it delivers realistic estimates if the local field fluctuations are taken into account in the yield criterion. The quantitative results obtained for cubic elasticity show a strong influence of the intragranular stress heterogeneity on the estimate of the micro yield stress

    Quality of internal representation shapes learning performance in feedback neural networks

    Get PDF
    A fundamental feature of complex biological systems is the ability to form feedback interactions with their environment. A prominent model for studying such interactions is reservoir computing, where learning acts on low-dimensional bottlenecks. Despite the simplicity of this learning scheme, the factors contributing to or hindering the success of training in reservoir networks are in general not well understood. In this work, we study non-linear feedback networks trained to generate a sinusoidal signal, and analyze how learning performance is shaped by the interplay between internal network dynamics and target properties. By performing exact mathematical analysis of linearized networks, we predict that learning performance is maximized when the target is characterized by an optimal, intermediate frequency which monotonically decreases with the strength of the internal reservoir connectivity. At the optimal frequency, the reservoir representation of the target signal is high-dimensional, de-synchronized, and thus maximally robust to noise. We show that our predictions successfully capture the qualitative behaviour of performance in non-linear networks. Moreover, we find that the relationship between internal representations and performance can be further exploited in trained non-linear networks to explain behaviours which do not have a linear counterpart. Our results indicate that a major determinant of learning success is the quality of the internal representation of the target, which in turn is shaped by an interplay between parameters controlling the internal network and those defining the task

    Parallelization of chip-based fluorescence immuno-assays with quantum-dot labelled beads

    Get PDF
    This paper presents an optical concept for the read-out of a parallel, bead-based fluorescence immunoassay conducted on a lab-on-a-disk platform. The reusable part of the modular setup comprises a detection unit featuring a single LED as light source, two emission-filters, and a color CCD-camera as standard components together with a spinning drive as actuation unit. The miniaturized lab-on-a-disk is devised as a disposable. In the read-out process of the parallel assay, beads are first identified by the color of incorporated quantum dots (QDs). Next, the reaction-specific fluorescence signal is quantified with FluoSpheres-labeled detection anti-bodies. To enable a fast and automated read-out, suitable algorithms have been implemented in this work. Based on this concept, we successfully demonstrated a Hepatitis-A assay on our disk-based lab-on-a-chip

    Consequences of wall stiffness for a beta-soft potential

    Full text link
    Modifications of the infinite square well E(5) and X(5) descriptions of transitional nuclear structure are considered. The eigenproblem for a potential with linear sloped walls is solved. The consequences of the introduction of sloped walls and of a quadratic transition operator are investigated.Comment: RevTeX 4, 8 pages, as published in Phys. Rev.

    Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells

    Get PDF
    Clonogenic neural stem cells (NSCs) are self-renewing cells that maintain the capacity to differentiate into brain-specific cell types, and may also replace or repair diseased brain tissue. NSCs can be directly isolated from fetal or adult nervous tissue, or derived from embryonic stem cells. Here, we describe the efficient conversion of human adult bone marrow stromal cells (hMSC) into a neural stem cell-like population (hmNSC, for human marrow-derived NSC-like cells). These cells grow in neurosphere-like structures, express high levels of early neuroectodermal markers, such as the proneural genes NeuroD1, Neurog2, MSl1 as well as otx1 and nestin, but lose the characteristics of mesodermal stromal cells. In the presence of selected growth factors, hmNSCs can be differentiated into the three main neural phenotypes: astroglia, oligodendroglia and neurons. Clonal analysis demonstrates that individual hmNSCs are multipotent and retain the capacity to generate both glia and neurons. Our cell culture system provides a powerful tool for investigating the molecular mechanisms of neural differentiation in adult human NSCs. hmNSCs may therefore ultimately help to treat acute and chronic neurodegenerative diseases

    Thermo-elasticity for anisotropic media in higher dimensions

    Full text link
    In this note we develop tools to study the Cauchy problem for the system of thermo-elasticity in higher dimensions. The theory is developed for general homogeneous anisotropic media under non-degeneracy conditions. For degenerate cases a method of treatment is sketched and for the cases of cubic media and hexagonal media detailed studies are provided.Comment: 33 pages, 5 figure
    • ā€¦
    corecore